文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Based on the Dual Pathway of Interaction-Mediated NF-κB in Cell Apoptosis and Immune Inflammation to Study the Effect of Danzhi Xiaoyao Powder on the Learning and Cognitive Ability of AD Model Rats.

作者信息

Wang Hu-Ping, Li Ming-Cheng, Yang Jiao, Zhou Jun, Meng Zhi-Peng, Hu Yun-Yun, Lyu Yu-Jie, Chen Yi-Qin, Han Yu-Mei, Pei Wen-Li

机构信息

School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China.

Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China.

出版信息

Degener Neurol Neuromuscul Dis. 2025 Apr 14;15:41-64. doi: 10.2147/DNND.S475290. eCollection 2025.


DOI:10.2147/DNND.S475290
PMID:40297714
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12035751/
Abstract

BACKGROUND: Apoptosis and immune inflammation play important roles in the pathological process of Alzheimer's disease (AD), but their specific pathogenesis is still unclear. Therefore, this article focuses on exploring the effects of Danzhi Xiaoyao Powder (DXP) on the learning and memory ability of AD model rats from the dual mechanisms of apoptosis and immune inflammation. METHODS: The AD model was replicated by injecting Okadaic acid (100 ng) into the bilateral hippocampus of rats. Successful rats were selected and orally administered with donepezil hydrochloride and DXP decoction for 42 days. Their learning and memory abilities, hippocampal morphology, Aβ expression, inflammatory factors, apoptotic factors, anti apoptotic factors, as well as the expression of pathway proteins and mRNA were detected. RESULTS: After DXP intervention, the learning and memory abilities of rats improved, the neuronal cell arrangement was more complete, the expression of Aβ decreased, the expression of pro-inflammatory cytokine and apoptotic factors decreased, the expression of anti apoptotic factors increased, Protein Kinase B (Akt) expression and activity significant up-regulation, and nuclear factor kappa-B (NF-κB), p38 MAPK (p38), MAPKAPK-2 (MK2), Cyclooxygenase-2 (COX-2) protein and mRNA expression were significantly down-regulated. CONCLUSION: DXP can improve the learning and cognitive abilities of AD model rats, and its mechanism of action may be related to the regulation of the Akt/NF-κB apoptosis pathway mediated by NF-κB interaction and the p38MAPK/MK2/COX-2 immune inflammatory dual pathway.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/f66acbb21e1b/DNND-15-41-g0028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/d905119c93a3/DNND-15-41-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/ecb7c91d9ce3/DNND-15-41-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/bb68f421c837/DNND-15-41-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/d4993bfd3cbf/DNND-15-41-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/d57fdf56fe65/DNND-15-41-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/d5a84ed21fc0/DNND-15-41-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/44ee78c953a9/DNND-15-41-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/2ee12488d0d7/DNND-15-41-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/c60a5904e437/DNND-15-41-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/4f8883414073/DNND-15-41-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/c6e9d5b81b63/DNND-15-41-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/69a9863d7fa5/DNND-15-41-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/5bd57af31bb8/DNND-15-41-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/1cea0f2c0878/DNND-15-41-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/c5d08fc4089f/DNND-15-41-g0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/287bbf3d6441/DNND-15-41-g0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/854c2dedbfcb/DNND-15-41-g0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/e185f004a795/DNND-15-41-g0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/57f923cf81af/DNND-15-41-g0019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/6409a6b56ef4/DNND-15-41-g0020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/c841f9bbc29d/DNND-15-41-g0021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/c56546a47bf5/DNND-15-41-g0022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/e5350a588edf/DNND-15-41-g0023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/dd14c77b5a0d/DNND-15-41-g0024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/186b44bdf86e/DNND-15-41-g0025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/12189b9e70ec/DNND-15-41-g0026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/8a872e2905a4/DNND-15-41-g0027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/f66acbb21e1b/DNND-15-41-g0028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/d905119c93a3/DNND-15-41-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/ecb7c91d9ce3/DNND-15-41-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/bb68f421c837/DNND-15-41-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/d4993bfd3cbf/DNND-15-41-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/d57fdf56fe65/DNND-15-41-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/d5a84ed21fc0/DNND-15-41-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/44ee78c953a9/DNND-15-41-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/2ee12488d0d7/DNND-15-41-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/c60a5904e437/DNND-15-41-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/4f8883414073/DNND-15-41-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/c6e9d5b81b63/DNND-15-41-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/69a9863d7fa5/DNND-15-41-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/5bd57af31bb8/DNND-15-41-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/1cea0f2c0878/DNND-15-41-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/c5d08fc4089f/DNND-15-41-g0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/287bbf3d6441/DNND-15-41-g0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/854c2dedbfcb/DNND-15-41-g0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/e185f004a795/DNND-15-41-g0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/57f923cf81af/DNND-15-41-g0019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/6409a6b56ef4/DNND-15-41-g0020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/c841f9bbc29d/DNND-15-41-g0021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/c56546a47bf5/DNND-15-41-g0022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/e5350a588edf/DNND-15-41-g0023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/dd14c77b5a0d/DNND-15-41-g0024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/186b44bdf86e/DNND-15-41-g0025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/12189b9e70ec/DNND-15-41-g0026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/8a872e2905a4/DNND-15-41-g0027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/12035751/f66acbb21e1b/DNND-15-41-g0028.jpg

相似文献

[1]
Based on the Dual Pathway of Interaction-Mediated NF-κB in Cell Apoptosis and Immune Inflammation to Study the Effect of Danzhi Xiaoyao Powder on the Learning and Cognitive Ability of AD Model Rats.

Degener Neurol Neuromuscul Dis. 2025-4-14

[2]
[Heixiaoyao Powder interferes with microglia polarization in AD model mice by regulating NOX2/ROS/NF-κB signaling pathway].

Zhongguo Zhong Yao Za Zhi. 2023-8

[3]
Regulation of the NF-κB/NLRP3 signalling pathway by decoction reduces neuroinflammation in mice with Alzheimer's disease.

Ann Med. 2024-12

[4]
[Effect of Erjing Pills on alleviating neuroinflammation of AD rats based on TLR4/NF-κB/NLRP3 pathway and its mechanism].

Zhongguo Zhong Yao Za Zhi. 2023-2

[5]
[Mechanisms of moxibustion preconditioning underlying improving learning-memory ability by regulating polarization of microglia via TLR4/NF-κB signaling pathway in AD rats].

Zhen Ci Yan Jiu. 2023-6-25

[6]
Beta-amyloid-induced apoptosis is associated with cyclooxygenase-2 up-regulation via the mitogen-activated protein kinase-NF-kappaB signaling pathway.

Free Radic Biol Med. 2005-6-15

[7]
Neuroprotective effects of Shenghui decoction via inhibition of the JNK/p38 MAPK signaling pathway in an AlCl-induced zebrafish (Danio rerio) model of Alzheimer's disease.

J Ethnopharmacol. 2024-6-28

[8]
MiR-216a-5p ameliorates learning-memory deficits and neuroinflammatory response of Alzheimer's disease mice via regulation of HMGB1/NF-κB signaling.

Brain Res. 2021-9-1

[9]
Atorvastatin Attenuates Cognitive Deficits and Neuroinflammation Induced by Aβ Involving Modulation of TLR4/TRAF6/NF-κB Pathway.

J Mol Neurosci. 2018-2-7

[10]
Down-regulated long non-coding RNA ANRIL restores the learning and memory abilities and rescues hippocampal pyramidal neurons from apoptosis in streptozotocin-induced diabetic rats via the NF-κB signaling pathway.

J Cell Biochem. 2018-3-30

本文引用的文献

[1]
Icariin improves cognitive impairment by inhibiting ferroptosis of nerve cells.

Aging (Albany NY). 2023-10-24

[2]
Environmental toxin chlorpyrifos induces liver injury by activating P53-mediated ferroptosis via GSDMD-mtROS.

Ecotoxicol Environ Saf. 2023-6-1

[3]
Imidacloprid activates Kupffer cells pyroptosis to induce liver injury in mice via P2X7.

Int Immunopharmacol. 2023-6

[4]
Mechanism of neocryptotanshinone in protecting against cerebral ischemic injury: By suppressing M1 polarization of microglial cells and promoting cerebral angiogenesis.

Int Immunopharmacol. 2023-3

[5]
Paeonol Protects against Methotrexate Hepatotoxicity by Repressing Oxidative Stress, Inflammation, and Apoptosis-The Role of Drug Efflux Transporters.

Pharmaceuticals (Basel). 2022-10-21

[6]
Akt: a key transducer in cancer.

J Biomed Sci. 2022-10-1

[7]
CC-99677, a novel, oral, selective covalent MK2 inhibitor, sustainably reduces pro-inflammatory cytokine production.

Arthritis Res Ther. 2022-8-18

[8]
Dimethyl Fumarate Induces Apoptosis via Inhibition of NF-κB and Enhances the Effect of Paclitaxel and Adriamycin in Human TNBC Cells.

Int J Mol Sci. 2022-8-4

[9]
Artemisinin Attenuates Amyloid-Induced Brain Inflammation and Memory Impairments by Modulating TLR4/NF-κB Signaling.

Int J Mol Sci. 2022-6-6

[10]
Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases.

J Inflamm Res. 2022-5-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索