Suppr超能文献

去除昼夜节律后的心率变异性在一天中的所有时间段都能实现对压力评估的高精度。

Heart rate variability with circadian rhythm removed achieved high accuracy for stress assessment across all times throughout the day.

作者信息

Shen Yafei, Fang Zihan, Zhang Tao, Yu Feng, Xu Ying, Yang Ling

机构信息

School of Mathematical Sciences, Soochow University, Suzhou, Jiangsu, China.

Center for Systems Biology, Soochow University, Suzhou, Jiangsu, China.

出版信息

Front Physiol. 2025 Apr 14;16:1535331. doi: 10.3389/fphys.2025.1535331. eCollection 2025.

Abstract

BACKGROUND

Assessing real-time stress in individuals to prevent the accumulation of stress is necessary due to the adverse effects of excessive psychological stress on health. Since both stress and circadian rhythms affect the excitability of the nervous system, the influence of circadian rhythms needs to be considered during stress assessment. Most studies train classifiers using physiological data collected during fixed short time periods, overlooking the assessment of stress levels at other times.

METHODS

In this work, we propose a method for training a classifier capable of identifying stress and resting states throughout the day, based on 10 short-term heart rate variability (HRV) feature data obtained from morning, noon, and evening. To characterize the circadian rhythms of HRV features, heartbeat interval data were collected and analyzed from 50 volunteers over three consecutive days. The circadian rhythm trends in the HRV features were then removed using the Smoothness Priors Approach (SPA), and XGBoost models were trained to assess stress.

RESULTS

The results show that all HRV features exhibit 12-h and 24-h circadian rhythms, and the circadian rhythm differences across different days for individuals are relatively small. Furthermore, training classifiers on detrended data can improve the overall accuracy of stress assessment across all time periods. Specifically, when combining data from different time periods as the training dataset, the accuracy of the classifier trained on detrended data increases by 13.67%.

DISCUSSION

These findings indicate that using HRV features with circadian rhythm trends removed is an effective method for assessing stress at all times throughout the day.

摘要

背景

由于过度心理压力对健康有不利影响,评估个体的实时压力以防止压力积累是必要的。由于压力和昼夜节律都会影响神经系统的兴奋性,因此在压力评估过程中需要考虑昼夜节律的影响。大多数研究使用在固定短时间内收集的生理数据训练分类器,而忽略了其他时间的压力水平评估。

方法

在这项工作中,我们提出了一种基于从早晨、中午和晚上获得的10个短期心率变异性(HRV)特征数据训练能够识别全天压力和休息状态的分类器的方法。为了表征HRV特征的昼夜节律,从50名志愿者连续三天收集并分析心跳间隔数据。然后使用平滑先验方法(SPA)消除HRV特征中的昼夜节律趋势,并训练XGBoost模型来评估压力。

结果

结果表明,所有HRV特征均呈现12小时和24小时的昼夜节律,且个体不同日期的昼夜节律差异相对较小。此外,在去趋势化数据上训练分类器可以提高所有时间段压力评估的整体准确性。具体而言,当将来自不同时间段的数据组合作为训练数据集时,在去趋势化数据上训练的分类器的准确性提高了13.67%。

讨论

这些发现表明,使用去除昼夜节律趋势的HRV特征是全天随时评估压力的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee36/12034550/5c6b04fa17eb/fphys-16-1535331-g001.jpg

相似文献

1
2
Circadian variation in sports performance.
Sports Med. 1996 Apr;21(4):292-312. doi: 10.2165/00007256-199621040-00005.
4
Circadian rhythm modulation in heart rate variability as potential biomarkers for major depressive disorder: A machine learning approach.
J Psychiatr Res. 2025 Apr;184:340-349. doi: 10.1016/j.jpsychires.2025.03.002. Epub 2025 Mar 4.
5
Circadian rhythmicity of heart rate variability and its impact on cardiac autonomic modulation in asthma.
Chronobiol Int. 2021 Nov;38(11):1631-1639. doi: 10.1080/07420528.2021.1938595. Epub 2021 Jun 14.
6
Machine learning-based classification of circadian rhythm characteristics for mild cognitive impairment in the elderly.
Front Public Health. 2022 Oct 28;10:1036886. doi: 10.3389/fpubh.2022.1036886. eCollection 2022.
7
The influence of short-term sedentary behavior on circadian rhythm of heart rate and heart rate variability.
Chronobiol Int. 2019 Mar;36(3):374-380. doi: 10.1080/07420528.2018.1550422. Epub 2018 Dec 3.
8
Abnormal circadian rhythm of heart rate variability and their association with symptoms in patients with major depressive disorder.
J Affect Disord. 2024 Oct 1;362:14-23. doi: 10.1016/j.jad.2024.06.102. Epub 2024 Jun 26.
10
Robust circadian rhythm in heart rate and its variability: influence of exogenous melatonin and photoperiod.
J Sleep Res. 2007 Jun;16(2):148-55. doi: 10.1111/j.1365-2869.2007.00581.x.

本文引用的文献

1
Changes in the Circadian Rhythm of High-Frequency Heart Rate Variability Associated With Depression.
J Korean Med Sci. 2023 May 15;38(19):e142. doi: 10.3346/jkms.2023.38.e142.
2
The temporal dynamics of the Stroop effect from childhood to young and older adulthood.
PLoS One. 2023 Mar 30;18(3):e0256003. doi: 10.1371/journal.pone.0256003. eCollection 2023.
3
Stress management using fNIRS and binaural beats stimulation.
Biomed Opt Express. 2022 May 24;13(6):3552-3575. doi: 10.1364/BOE.455097. eCollection 2022 Jun 1.
6
Heart Rate Variability (HRV) and Pulse Rate Variability (PRV) for the Assessment of Autonomic Responses.
Front Physiol. 2020 Jul 23;11:779. doi: 10.3389/fphys.2020.00779. eCollection 2020.
7
Heart Rate Variability, Sleep Quality, and Depression in the Context of Chronic Stress.
Ann Behav Med. 2021 Mar 16;55(2):155-164. doi: 10.1093/abm/kaaa039.
9
Ultra-short term HRV features as surrogates of short term HRV: a case study on mental stress detection in real life.
BMC Med Inform Decis Mak. 2019 Jan 17;19(1):12. doi: 10.1186/s12911-019-0742-y.
10
Are ultra-short heart rate variability features good surrogates of short-term ones? State-of-the-art review and recommendations.
Healthc Technol Lett. 2018 Mar 14;5(3):94-100. doi: 10.1049/htl.2017.0090. eCollection 2018 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验