Zhou Zhongkun, Ma Yunhao, Zhang Dekui, Ji Rui, Wang Yiqing, Zhao Jianfang, Ma Chi, Zhu Hongmei, Shen Haofei, Jiang Xinrong, Niu Yuqing, Lu Juan, Zhang Baizhuo, Tu Lixue, Zhang Hua, Ma Xin, Chen Peng
School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China.
The Second Hospital of Lanzhou University, Lanzhou, China.
mSystems. 2025 May 20;10(5):e0027625. doi: 10.1128/msystems.00276-25. Epub 2025 Apr 29.
Colorectal cancer (CRC) is the third most common cancer, and it can be prevented by performing early screening. As a hallmark of cancer, the human microbiome plays important roles in the occurrence and development of CRC. Recently, the blood microbiome has been proposed as an effective diagnostic tool for various diseases, yet its performance on CRC deserves further exploration. In this study, 133 human feces and 120 blood samples are collected, including healthy individuals, adenoma patients, and CRC patients. The blood cfDNA and fecal genome are subjected to shotgun metagenome sequencing. After removing human sequences, the microbial sequences in blood are analyzed. Based on the differential microbes and functions, random forest (RF) models are constructed for adenoma and CRC diagnosis. The results show that alterations of blood microbial signatures can be captured under low coverage (even at 3×). RF diagnostic models based on blood microbial markers achieve high area under the curve (AUC) values for adenoma patients (0.8849) and CRC patients (0.9824). When the fragmentation pattern is combined with microbial and KEGG markers, higher AUC values are obtained. Furthermore, compared to the blood microbiome, the fecal microbiome shows a different community composition, whereas their changes in KEGG pathways are similar. Pathogenic bacteria () in feces increased gradually from the healthy group to the adenoma and CRC groups. Additionally, in feces and blood shows a positive correlation in CRC patients. Cumulatively, the integration of blood microbiome and fragmentation pattern is promising for CRC diagnosis.IMPORTANCEThe cell-free DNA of the human microbiome can enter the blood and can be used for cancer diagnosis, whereas its diagnostic potential in colorectal cancer and association with gut microbiome has not been explored. The microbial sequences in blood account for less than 1% of the total sequences. The blood microbial composition, KEGG functions, and fragmentation pattern are different among healthy individuals, adenoma patients, and CRC patients. Machine learning models based on these differential characteristics achieve high diagnostic accuracy, especially when they are integrated with fragmentation patterns. The great difference between fecal and blood microbiomes indicates that microbial sequences in blood may originate from various organs. Therefore, this study provides new insights into the community composition and functions of the blood microbiome of CRC and proposes an effective non-invasive diagnostic tool.
结直肠癌(CRC)是第三大常见癌症,可通过早期筛查预防。作为癌症的一个标志,人类微生物组在CRC的发生和发展中起重要作用。最近,血液微生物组已被提议作为各种疾病的有效诊断工具,但其在CRC方面的表现值得进一步探索。在本研究中,收集了133份人类粪便和120份血液样本,包括健康个体、腺瘤患者和CRC患者。对血液游离DNA(cfDNA)和粪便基因组进行鸟枪法宏基因组测序。去除人类序列后,分析血液中的微生物序列。基于差异微生物和功能,构建随机森林(RF)模型用于腺瘤和CRC诊断。结果表明,在低覆盖度(甚至3×)下即可捕获血液微生物特征的改变。基于血液微生物标志物的RF诊断模型对腺瘤患者(曲线下面积[AUC]值为0.8849)和CRC患者(AUC值为0.9824)具有较高的AUC值。当将片段化模式与微生物和京都基因与基因组百科全书(KEGG)标志物结合时,可获得更高的AUC值。此外,与血液微生物组相比,粪便微生物组显示出不同的群落组成,而它们在KEGG途径中的变化相似。粪便中的病原菌()从健康组到腺瘤组和CRC组逐渐增加。此外,粪便和血液中的 在CRC患者中呈正相关。总体而言,血液微生物组与片段化模式的整合在CRC诊断方面具有前景。
重要性
人类微生物组的游离DNA可进入血液并用于癌症诊断,但其在结直肠癌中的诊断潜力及其与肠道微生物组的关联尚未得到探索。血液中的微生物序列占总序列的比例不到1%。健康个体、腺瘤患者和CRC患者的血液微生物组成、KEGG功能和片段化模式不同。基于这些差异特征的机器学习模型具有较高的诊断准确性,尤其是当它们与片段化模式整合时。粪便和血液微生物组之间的巨大差异表明血液中的微生物序列可能源自各个器官。因此,本研究为CRC血液微生物组的群落组成和功能提供了新的见解,并提出了一种有效的非侵入性诊断工具。