Willis Noah B, Papoutsakis Eleftherios T
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA.
The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA.
mSystems. 2025 May 20;10(5):e0003025. doi: 10.1128/msystems.00030-25. Epub 2025 Apr 29.
Syntrophic cocultures (hitherto assumed to be commensalistic) of and , whereby CO and H produced by the former feed the latter, result in interspecies cell fusion involving large-scale exchange of protein, RNA, and DNA between the two organisms. Although mammalian cell fusion is mechanistically dissected, the mechanism for such microbial-cell fusions is unknown. To start exploring this mechanism, we used RNA sequencing to identify genes differentially expressed in this coculture using two types of comparisons. One type compared coculture to the two monocultures, capturing the combined impact of interactions through soluble signals in the medium and through direct cell-to-cell interactions. The second type compared membrane-separated versus -unseparated cocultures, isolating the impact of interspecies physical contact. While we could not firmly identify specific genes that might drive cell fusion, consistent with our hypothesized model for this interspecies microbial cell fusion, we observed differential regulation of genes involved in autotrophic Wood-Ljungdahl pathway metabolism and genes of the motility machinery. Unexpectedly, we also identified differential regulation of biosynthetic genes of several amino acids, and notably of arginine and histidine. We verified that they are produced by and are metabolized by to its growth advantage. These and other findings, and notably upregulation of ribosomal-protein genes, paint a more complex syntrophic picture and suggest a mutualistic relationship, whereby beyond CO and H, feeds with growth-boosting amino acids, while benefiting from the H utilization by .IMPORTANCEThe construction and study of synthetic microbial cocultures is a growing research area due to the untapped potential of defined multi-species industrial bioprocesses and the utility of defined cocultures for generating insight into complex, undefined, natural microbial consortia. Our previous work showed that coculturing and leads to a unique metabolic phenotype (production of isopropanol) and heterologous cell fusion events. Here, we used RNAseq to explore genes involved in and impacted by these fusions. First, we compared gene expression in coculture to each monoculture. Second, we utilized a transwell system to compare gene expression in mixed cocultures to cocultures with both species physically separated by a permeable membrane, isolating the impact of interspecies "touching" on the transcriptome. This study deepens our mechanistic understanding of the coculture phenotype, laying the groundwork for reverse genetic studies of heterologous cell fusion in cocultures.
嗜甲基菌属(Methanomethylovorans)和嗜氢甲烷杆菌属(Methanobacterium hydrogenoformans)的互营共培养物(此前被认为是共生关系),即前者产生的一氧化碳(CO)和氢气(H₂)为后者提供养分,会导致种间细胞融合,涉及两种生物体之间大规模的蛋白质、RNA和DNA交换。尽管哺乳动物细胞融合的机制已被深入剖析,但这种微生物细胞融合的机制尚不清楚。为了开始探索这一机制,我们使用RNA测序,通过两种比较方式来鉴定在这种共培养物中差异表达的基因。一种比较是将共培养物与两种单培养物进行对比,以捕捉通过培养基中的可溶性信号以及直接的细胞间相互作用所产生的综合影响。第二种比较是将膜分隔的共培养物与未分隔的共培养物进行对比,以分离种间物理接触的影响。虽然我们无法确切鉴定出可能驱动细胞融合的特定基因,但与我们针对这种种间微生物细胞融合所提出的假设模型一致,我们观察到参与自养型伍德 - Ljungdahl途径代谢的基因以及运动机制相关基因的差异调控。出乎意料的是,我们还发现了几种氨基酸生物合成基因的差异调控,尤其是精氨酸和组氨酸的生物合成基因。我们证实它们由嗜甲基菌属产生,并被嗜氢甲烷杆菌属代谢以促进其生长。这些发现以及其他结果,特别是嗜甲基菌属核糖体蛋白基因的上调,描绘了一幅更为复杂的互营图景,并表明存在一种互利共生关系,即除了CO和H₂之外,嗜甲基菌属为嗜氢甲烷杆菌属提供促进生长的氨基酸,同时从嗜氢甲烷杆菌属对H₂的利用中受益。
合成微生物共培养物的构建与研究是一个不断发展的研究领域,这是因为特定多物种工业生物过程具有未开发的潜力,且特定共培养物有助于深入了解复杂、未定义的天然微生物群落。我们之前的工作表明,嗜甲基菌属和嗜氢甲烷杆菌属的共培养会导致独特的代谢表型(异丙醇的产生)和异源细胞融合事件。在这里,我们使用RNA测序来探索参与这些融合以及受其影响的基因。首先,我们将共培养物中的基因表达与每种单培养物中的基因表达进行比较。其次,我们利用Transwell系统将混合共培养物中的基因表达与两种物种被可渗透膜物理分隔的共培养物中的基因表达进行比较,以分离种间“接触”对转录组的影响。这项研究加深了我们对嗜甲基菌属 - 嗜氢甲烷杆菌属共培养表型的机制理解,为嗜甲基菌属 - 嗜氢甲烷杆菌属共培养物中异源细胞融合的反向遗传学研究奠定了基础。