Aminzadehanboohi Marzieh, Makridakis Manousos, Rasti Delphine, Cambet Yves, Krause Karl-Heinz, Vlahou Antonia, Jaquet Vincent
Department of Pathology and Immunology, Medical School, University of Geneva, 1211 Geneva, Switzerland.
Center of Systems Biology, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece.
Antioxidants (Basel). 2025 Apr 18;14(4):486. doi: 10.3390/antiox14040486.
Transforming Growth Factor-Beta 1 (TGF-β1) plays a pivotal role in the differentiation of fibroblasts into myofibroblasts, which is a critical process in tissue repair, fibrosis, and wound healing. Upon exposure to TGF-β1, fibroblasts acquire a contractile phenotype and secrete collagen and extracellular matrix components. Numerous studies have identified hydrogen peroxide (HO) as a key downstream effector of TGF-β1 in this pathway. HO functions as a signalling molecule, regulating various cellular processes mostly through post-translational redox modifications of cysteine thiol groups of specific proteins. In this study, we used primary human skin fibroblast cultures to investigate the oxidative mechanisms triggered by TGF-β1. We analyzed the expression of redox-related genes, evaluated the effects of the genetic and pharmacological inhibition of HO-producing enzymes, and employed an unbiased redox proteomics approach (OxICAT) to identify proteins undergoing reversible cysteine oxidation. Our findings revealed that TGF-β1 treatment upregulated the expression of oxidant-generating genes while downregulating antioxidant genes. Low concentrations of diphenyleneiodonium mitigated myofibroblast differentiation and mitochondrial oxygen consumption, suggesting the involvement of a flavoenzyme in this process. Furthermore, we identified the increased oxidation of highly conserved cysteine residues in key proteins such as the epidermal growth factor receptor, filamin A, fibulin-2, and endosialin during the differentiation process. Collectively, this study provides insights into the sources of HO in fibroblasts and highlights the novel redox mechanisms underpinning fibroblast-to-myofibroblast differentiation.
转化生长因子-β1(TGF-β1)在成纤维细胞向肌成纤维细胞的分化过程中起关键作用,这是组织修复、纤维化和伤口愈合中的一个关键过程。在接触TGF-β1后,成纤维细胞获得收缩表型并分泌胶原蛋白和细胞外基质成分。大量研究已确定过氧化氢(HO)是该途径中TGF-β1的关键下游效应物。HO作为一种信号分子,主要通过对特定蛋白质半胱氨酸硫醇基团进行翻译后氧化还原修饰来调节各种细胞过程。在本研究中,我们使用原代人皮肤成纤维细胞培养物来研究TGF-β1触发的氧化机制。我们分析了氧化还原相关基因的表达,评估了HO产生酶的基因和药理学抑制的影响,并采用无偏向性氧化还原蛋白质组学方法(OxICAT)来鉴定经历可逆半胱氨酸氧化的蛋白质。我们的研究结果表明,TGF-β1处理上调了产氧化剂基因的表达,同时下调了抗氧化基因。低浓度的二苯基碘鎓减轻了肌成纤维细胞的分化和线粒体氧消耗,表明黄素酶参与了这一过程。此外,我们发现在分化过程中,关键蛋白如表皮生长因子受体、细丝蛋白A、纤连蛋白-2和内涎蛋白中高度保守的半胱氨酸残基的氧化增加。总的来说,本研究深入了解了成纤维细胞中HO的来源,并突出了成纤维细胞向肌成纤维细胞分化的新氧化还原机制。
Antioxidants (Basel). 2025-4-18
Am J Physiol Renal Physiol. 2023-5-1
Nat Rev Mol Cell Biol. 2024-8
Oncogene. 2024-1
Curr Opin Chem Biol. 2023-12
Methods Mol Biol. 2022
Eur Respir J. 2021-1
Nat Rev Mol Cell Biol. 2020-3-30
Biomolecules. 2020-1-6