Suppr超能文献

卵巢癌中细胞衰老基因的综合生物信息学分析:分子亚型、预后风险分层及化疗耐药预测

Integrative Bioinformatic Analysis of Cellular Senescence Genes in Ovarian Cancer: Molecular Subtyping, Prognostic Risk Stratification, and Chemoresistance Prediction.

作者信息

Li Ailian, Xu Dianbo

机构信息

Department of Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211199, China.

出版信息

Biomedicines. 2025 Apr 4;13(4):877. doi: 10.3390/biomedicines13040877.

Abstract

: Ovarian cancer (OC) is a heterogeneous malignancy associated with a poor prognosis, necessitating robust biomarkers for risk stratification and therapy optimization. Cellular senescence-related genes (CSGs) are emerging as pivotal regulators of tumorigenesis and immune modulation, yet their prognostic and therapeutic implications in OC remain underexplored. : We integrated RNA-sequencing data from TCGA-OV (n = 376), GTEx (n = 88), and GSE26712 (n = 185) to identify differentially expressed CSGs (DE-CSGs). Consensus clustering, Cox regression, LASSO-penalized modeling, and immune infiltration analyses were employed to define molecular subtypes, construct a prognostic risk score, and characterize tumor microenvironment (TME) dynamics. Drug sensitivity was evaluated using the Genomics of Drug Sensitivity in Cancer (GDSC)-derived chemotherapeutic response profiles. : Among 265 DE-CSGs, 31 were prognostic in OC, with frequent copy number variations (CNVs) in genes such as STAT1, FOXO1, and CCND1. Consensus clustering revealed two subtypes (C1/C2): C2 exhibited immune-rich TME, elevated checkpoint expression (PD-L1, CTLA4), and poorer survival. A 19-gene risk model stratified patients into high-/low-risk groups, validated in GSE26712 (AUC: 0.586-0.713). High-risk patients showed lower tumor mutation burden (TMB), immune dysfunction, and resistance to Docetaxel/Olaparib. Six hub genes (HMGB3, MITF, CKAP2, ME1, CTSD, STAT1) were independently predictive of survival. : This study establishes CSGs as critical determinants of OC prognosis and immune evasion. The molecular subtypes and risk model provide actionable insights for personalized therapy, while identified therapeutic vulnerabilities highlight opportunities to overcome chemoresistance through senescence-targeted strategies.

摘要

卵巢癌(OC)是一种异质性恶性肿瘤,预后较差,因此需要强大的生物标志物来进行风险分层和优化治疗。细胞衰老相关基因(CSGs)正逐渐成为肿瘤发生和免疫调节的关键调节因子,但其在OC中的预后和治疗意义仍未得到充分探索。

我们整合了来自TCGA-OV(n = 376)、GTEx(n = 88)和GSE26712(n = 185)的RNA测序数据,以鉴定差异表达的CSGs(DE-CSGs)。采用共识聚类、Cox回归、LASSO惩罚模型和免疫浸润分析来定义分子亚型、构建预后风险评分并表征肿瘤微环境(TME)动态。使用癌症药物敏感性基因组学(GDSC)得出的化疗反应谱评估药物敏感性。

在265个DE-CSGs中,有31个在OC中具有预后意义,STAT1、FOXO1和CCND1等基因存在频繁的拷贝数变异(CNVs)。共识聚类揭示了两个亚型(C1/C2):C2表现出富含免疫的TME、检查点表达升高(PD-L1、CTLA4)和较差的生存率。一个19基因风险模型将患者分为高/低风险组,并在GSE26712中得到验证(AUC:0.586 - 0.713)。高风险患者显示出较低的肿瘤突变负荷(TMB)、免疫功能障碍以及对多西他赛/奥拉帕利的耐药性。六个枢纽基因(HMGB3、MITF、CKAP2、ME1、CTSD、STAT1)可独立预测生存。

本研究将CSGs确立为OC预后和免疫逃逸的关键决定因素。分子亚型和风险模型为个性化治疗提供了可行的见解,而确定的治疗脆弱性突出了通过靶向衰老策略克服化疗耐药性的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d015/12025183/d69c807f23fa/biomedicines-13-00877-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验