Suppr超能文献

通过整合蛋白质组与基因组鉴定糖尿病肾病的生物标志物和治疗靶点

The Identification of Biomarkers and Therapeutic Targets for Diabetic Kidney Disease by Integrating the Proteome with the Genome.

作者信息

Yu Yuefeng, Li Jiang, Yu Bowei, Yu Yuetian, Sun Ying, Wang Yuying, Wang Bin, Zhang Kun, Tang Mengjun, Lu Yingli, Wang Ningjian

机构信息

Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.

The 967th Hospital of Joint Logistic Support Force of People's Liberation Army, Dalian 116011, China.

出版信息

Biomedicines. 2025 Apr 16;13(4):971. doi: 10.3390/biomedicines13040971.

Abstract

The blood proteome is a major source of biomarkers and therapeutic targets. We conducted a proteome-wide Mendelian randomization (MR) study to identify cardiometabolic protein markers for diabetic kidney disease (DKD). We measured all 369 proteins in the Olink Explore 384 Cardiometabolic and Cardiometabolic panel of 500 patients with type 2 diabetes from 11 communities in Shanghai. Protein quantitative trait loci (pQTLs) were derived by coupling genomic and proteomic data. Cis-pQTLs identified for proteins were used as instrumental variables in MR analyses of DKD risk, and the outcome data were obtained from 8401 Japanese individuals with type 2 diabetes (2809 cases and 5592 controls). Replication MR analysis was performed in the UK Biobank Pharma Proteomics Project (UKB-PPP). Colocalization analysis and the Heidi test were used to examine whether the identified proteins and DKD shared causal variants. Among the 369 proteins, we identified 66 independent cis-pQTLs for 64 proteins. MR analysis suggested that two cardiometabolic proteins (UMOD and SIRPA) may play a causal role in increasing DKD risk, with UMOD showing replication in UKB-PPP. Bayesian colocalization further supported the causal effects of these proteins. Additional analyses indicated that UMOD is highly expressed in renal macrophages. Further downstream analyses suggested that UMOD could be a potential novel target and that SIRPA could be a potential repurposing target for DKD; however, further validation is needed. By integrating proteomic and genetic data from patients with type 2 diabetes, we identified two protein biomarkers potentially associated with DKD risk. These findings provide insights into DKD pathophysiology and therapeutic target development, but further replication and functional studies are needed to confirm these associations.

摘要

血液蛋白质组是生物标志物和治疗靶点的主要来源。我们进行了一项全蛋白质组孟德尔随机化(MR)研究,以确定糖尿病肾病(DKD)的心脏代谢蛋白标志物。我们对来自上海11个社区的500例2型糖尿病患者的Olink Explore 384心脏代谢和心脏代谢检测板中的所有369种蛋白质进行了测量。通过整合基因组和蛋白质组数据得出蛋白质定量性状位点(pQTL)。为蛋白质鉴定出的顺式pQTL被用作DKD风险MR分析中的工具变量,结果数据来自8401名2型糖尿病日本个体(2809例病例和5592例对照)。在英国生物银行药物蛋白质组学项目(UKB-PPP)中进行了重复MR分析。共定位分析和Heidi检验用于检查鉴定出的蛋白质与DKD是否共享因果变异。在这369种蛋白质中,我们为64种蛋白质鉴定出66个独立的顺式pQTL。MR分析表明,两种心脏代谢蛋白(UMOD和SIRPA)可能在增加DKD风险中起因果作用,其中UMOD在UKB-PPP中得到了重复验证。贝叶斯共定位进一步支持了这些蛋白质的因果效应。进一步的分析表明,UMOD在肾巨噬细胞中高表达。进一步的下游分析表明,UMOD可能是一个潜在的新靶点,而SIRPA可能是DKD的一个潜在的重新利用靶点;然而,需要进一步验证。通过整合2型糖尿病患者的蛋白质组和遗传数据,我们鉴定出两种可能与DKD风险相关的蛋白质生物标志物。这些发现为DKD的病理生理学和治疗靶点开发提供了见解,但需要进一步的重复和功能研究来证实这些关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/509f/12025092/fd57559bddb4/biomedicines-13-00971-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验