Song Xian-Jiang, Ai Yong, Chen Xiao-Gang, Qin Yan, Tang Yuan-Yuan, Lv Hui-Peng, Li Peng-Fei, Peng Hang, Weng Yan-Ran, Chen Huan-Huan, Xiong Ren-Gen, Liao Wei-Qiang
Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, People's Republic of China.
J Am Chem Soc. 2025 May 14;147(19):16568-16577. doi: 10.1021/jacs.5c04038. Epub 2025 Apr 29.
Chiral ferroelectric crystals with inherent chirality and spontaneous polarization have recently gained considerable interest. However, the chiral topological texture, which provides a promising platform for exploring exotic functionalities, has never been found in enantiomeric ferroelectric crystals. Here, we report a pair of enantiomeric molecular ferroelectrics, [RFAO][ReO] and [SFAO][ReO] (RFAO/SFAO = (4,5/4,5)-4-fluoro-1-azabicyclo[3.2.1]octane). The enantiomers crystallize in the chiral-polar point group 2 at room temperature and undergo two ferroelectric phase transitions with an Aizu notation of 2222 at 350 K and 4322 at 463 K, respectively. Such phase transitions enable them to show a multistep switchable second-harmonic generation circular dichroism (SHG-CD) effect from high to low to off (inactive) SHG-CD states. More importantly, we observed spiral chiral ferroelectric domains in the enantiomers. To the best of our knowledge, this is the first discovery of chiral domains in enantiomeric ferroelectric crystals. Our breakthrough findings give new sights into the interplay between polarization and chirality and will greatly stimulate further exploration of chiral ferroelectric crystals with switchable SHG-CD and chiral domains for next-generation electronic-photonic devices.
具有固有手性和自发极化的手性铁电晶体最近引起了广泛关注。然而,在手性对映体铁电晶体中从未发现过能为探索奇异功能提供有前景平台的手性拓扑纹理。在此,我们报道了一对对映体分子铁电体,[RFAO][ReO]和[SFAO][ReO](RFAO/SFAO = (4,5/4,5)-4-氟-1-氮杂双环[3.2.1]辛烷)。这两种对映体在室温下结晶于手性极点点群2,并分别经历两次铁电相变,其爱知符号在350 K时为2222,在463 K时为4322。这种相变使它们能够呈现从高到低再到关闭(无活性)的多步可切换二次谐波产生圆二色性(SHG-CD)效应。更重要的是,我们在这两种对映体中观察到了螺旋手性铁电畴。据我们所知,这是在对映体铁电晶体中首次发现手性畴。我们的突破性发现为极化与手性之间的相互作用提供了新视角,并将极大地推动对具有可切换SHG-CD和手性畴的手性铁电晶体用于下一代电子光子器件的进一步探索。