Qiu Peng, Chen Yuan, He Na, Han Zhiya, Zhang Lijun, Hou Junbo, Ke Changchun, Lu Chenbao, Zhu Jinhui, Zhuang Xiaodong
School of Automotive Studies, Tongji University, 4800 Cao'an Road, Shanghai, 201804, China.
The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
Chemistry. 2025 Jun 12;31(33):e202501025. doi: 10.1002/chem.202501025. Epub 2025 May 6.
In response to the urgent demand for sustainable hydrogen production under industrial high-current-density conditions, this study presents the development of a Pt-decorated NiMo-based carbon-supported catalyst (Pt-NiMo/C) for efficient alkaline hydrogen evolution reaction (HER). The catalyst was synthesized via a solvent evaporation method followed by high-temperature pyrolysis, achieving uniform dispersion of Pt-NiMo nanoparticles on conductive carbon. Electrochemical evaluations revealed exceptional HER performance with ultralow overpotentials of 20 and 170 mV versus RHE at current densities of 10 and 100 mA cm⁻, respectively, surpassing commercial Pt/C benchmarks. The Pt-NiMo catalyst demonstrated robust stability over 120 hours at 100 mA cm⁻, attributed to its hierarchical structure and synergistic electronic interactions between Pt and NiMo. The MEA configuration showcased stable electrochemical performance with a current density of 100 mA cm⁻ at a cell voltage of 1.53 V versus RHE, highlighting its potential for efficient energy conversion applications such as water electrolysis or fuel cells. These results underscore the catalyst's potential for industrial-scale water electrolysis, offering a cost-effective and durable solution for green hydrogen production.
为响应工业高电流密度条件下对可持续制氢的迫切需求,本研究展示了一种用于高效碱性析氢反应(HER)的铂修饰镍钼基碳载催化剂(Pt-NiMo/C)的开发。该催化剂通过溶剂蒸发法合成,随后进行高温热解,实现了Pt-NiMo纳米颗粒在导电碳上的均匀分散。电化学评估显示,在电流密度分别为10和100 mA cm⁻²时,相对于可逆氢电极(RHE)的过电位极低,分别为20和170 mV,超过了商业Pt/C基准。Pt-NiMo催化剂在100 mA cm⁻²下表现出超过120小时的强大稳定性,这归因于其分级结构以及Pt与NiMo之间的协同电子相互作用。膜电极组件(MEA)配置在相对于RHE的电池电压为1.53 V时,电流密度为100 mA cm⁻²,展示出稳定的电化学性能,突出了其在水电解或燃料电池等高效能量转换应用中的潜力。这些结果强调了该催化剂在工业规模水电解中的潜力,为绿色制氢提供了一种经济高效且耐用的解决方案。