Kumar Ponnaiah Sathish, Bae Jihoon, Roh Jong Wook, Min Yuho, Lee Sungwon
Magnetics Initiative Life Care Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 711-873, Republic of Korea.
Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 711-873, Republic of Korea.
Nano Converg. 2025 Apr 29;12(1):21. doi: 10.1186/s40580-025-00485-2.
Developing functional solid polymer electrolytes (SPEs) is crucial for flexible, lightweight, and portable supercapacitors. This work presents an electrospinning approach to fabricate SPEs using poly(vinyl alcohol)-sodium chloride (PVA-NaCl) nanofibers (PNNF). CuNiO nanoparticles deposited on nitrogen-doped omnichannel carbon nanofibers (CuNiO@N-OCCFs), coated onto a carbon cloth (CC), serve as the positive electrode, enhancing faradaic capacitance. Meanwhile, the rationally designed N-OCCFs, also coated onto CC, function as the negative electrode, providing a high-surface-area, and facilitating rapid electron transport. Comprehensive characterization revealed insights into the morphology and chemical composition of both electrodes and the PNNF electrolyte. An all-solid-state asymmetric flexible supercapacitor (AFSC) device, CuNiO@N-OCCFs-1.5//N-OCCFs-1.5, was assembled using PNNF as both the electrolyte and separator and evaluated against devices employing gel and aqueous electrolytes. The PNNF electrolyte enabled a wider potential window (2.2 V) compared to gel (2.0 V) and liquid (1.8 V) electrolytes. The AFSC achieved an impressive energy density of 63.6 Wh kg at a power density of 1100 W kg, with 96.2% capacitance retention after 6000 charge/discharge cycles at 10 A g⁻. When two devices were connected in series, they powered a red LED for 5.33 min and a blue LED for 1.43 min, demonstrating practical applicability. This study provides a simple and effective strategy for fabricating high-energy-density AFSCs with excellent cycling stability and broad potential for flexible electronics.
开发功能性固体聚合物电解质(SPEs)对于柔性、轻质且便携的超级电容器至关重要。这项工作提出了一种静电纺丝方法,用于使用聚乙烯醇 - 氯化钠(PVA - NaCl)纳米纤维(PNNF)制备SPEs。沉积在氮掺杂全通道碳纳米纤维(CuNiO@N - OCCFs)上的CuNiO纳米颗粒,涂覆在碳布(CC)上,用作正极,增强法拉第电容。同时,同样涂覆在CC上的经过合理设计的N - OCCFs用作负极,提供高表面积并促进快速电子传输。综合表征揭示了对两个电极和PNNF电解质的形态和化学成分的深入了解。使用PNNF作为电解质和隔膜组装了一种全固态不对称柔性超级电容器(AFSC)器件CuNiO@N - OCCFs - 1.5//N - OCCFs - 1.5,并与采用凝胶和水性电解质的器件进行了评估。与凝胶电解质(2.0 V)和液体电解质(1.8 V)相比,PNNF电解质具有更宽的电位窗口(2.2 V)。该AFSC在功率密度为1100 W kg时实现了令人印象深刻的63.6 Wh kg的能量密度,在10 A g⁻下经过6000次充放电循环后电容保持率为96.2%。当两个器件串联连接时,它们为红色LED供电5.33分钟,为蓝色LED供电1.43分钟,展示了实际适用性。本研究为制造具有优异循环稳定性和在柔性电子领域具有广阔潜力的高能量密度AFSC提供了一种简单有效的策略。