Suppr超能文献

基于伽罗瓦域密码学和混合深度学习的高精度室内定位系统。

High accuracy indoor positioning system using Galois field-based cryptography and hybrid deep learning.

作者信息

Hazzazi Mohammad Mazyad, Shukla Prashant Kumar, Shukla Piyush Kumar, Alblehai Fahad, Nooh Sameer, Shah Mohd Asif

机构信息

Department of Mathematics, College of Science, King Khalid University, 61413, Abha, Saudi Arabia.

Department of Computer Science and Engineering, Amity School of Engineering and Technology (ASET), Amity University Mumbai, Mumbai, Maharashtra, 410206, India.

出版信息

Sci Rep. 2025 Apr 29;15(1):15064. doi: 10.1038/s41598-025-97715-8.

Abstract

In smart manufacturing, logistics, and other inside settings where the Global Positioning System (GPS) doesn't work, indoor positioning systems (IPS) are essential. Due to environmental complexity, signal noise, and possible data manipulation, traditional IPS techniques struggle with accuracy, resilience, and security. Online and offline phases are distinguished in the suggested indoor location system that employs deep learning and fingerprinting. During the offline phase, mobile devices gather signal strength measurements and contextual data traverse inside settings via Wi-Fi, Bluetooth, and magnetometers. Fingerprint classification using Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering follows the application of signal processing techniques for noise reduction and data augmentation. The online phase involves extracting information to improve the model's accuracy. These features can be signal-based, spatial-temporal, motion-based, or environmental. The Deep Spatial-Temporal Attention Network (Deep-STAN) is an innovative hybrid model for location classification that combines Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Long-Short Term Memory (LSTMs), and attention processes. The model hyperparameters are fine-tuned using hybrid optimization to guarantee optimal performance. The work's main contribution is the incorporation of ECC, an effective encryption and decryption method for signal data, which is based on Galois fields. This cryptographic method is well-suited for real-world applications since it guarantees low-latency operations while simultaneously improving data integrity and confidentiality. In addition, S-box enhances the IPS's resilience and security by including QR codes for distinct location marking and blockchain technology for safe and immutable storing of positioning data. Moreover, the performance of the suggested model includes an accuracy of 0.9937, precision of 0.987, sensitivity of 0.9898, and specificity of 0.9878, while when 80% of data were used it had an accuracy of 0.9804, precision of 0.9722, sensitivity of 0.9859, and specificity of 0.9756. These outcomes prove that the proposed system is stable and flexible enough to be used in indoor positioning applications.

摘要

在智能制造、物流以及全球定位系统(GPS)无法工作的其他室内环境中,室内定位系统(IPS)至关重要。由于环境复杂性、信号噪声以及可能的数据操纵,传统的IPS技术在准确性、弹性和安全性方面面临挑战。所建议的采用深度学习和指纹识别的室内定位系统分为在线和离线阶段。在离线阶段,移动设备通过Wi-Fi、蓝牙和磁力计收集信号强度测量值和上下文数据,在室内环境中穿行。在应用信号处理技术进行降噪和数据增强之后,使用基于密度的带噪声应用空间聚类(DBSCAN)聚类进行指纹分类。在线阶段涉及提取信息以提高模型的准确性。这些特征可以是基于信号的、时空的、基于运动的或环境的。深度时空注意力网络(Deep-STAN)是一种创新的混合模型,用于位置分类,它结合了卷积神经网络(CNN)、视觉Transformer(ViT)、长短期记忆(LSTM)和注意力过程。使用混合优化对模型超参数进行微调,以确保最佳性能。这项工作的主要贡献是纳入了ECC,这是一种基于伽罗瓦域的信号数据有效加密和解密方法。这种加密方法非常适合实际应用,因为它保证了低延迟操作,同时提高了数据完整性和保密性。此外,S盒通过包含用于不同位置标记的二维码和用于安全且不可变存储定位数据的区块链技术,增强了IPS的弹性和安全性。此外,所建议模型的性能包括准确率为0.9937、精确率为0.987、灵敏度为0.9898、特异性为0.9878,而当使用80%的数据时,其准确率为0.9804、精确率为0.9722、灵敏度为0.9859、特异性为0.9756。这些结果证明,所提出的系统足够稳定和灵活,可用于室内定位应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e79f/12041284/1748bc41ffce/41598_2025_97715_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验