Ukegbu Chiamaka Valerie, Mohamed Mgeni, Hoermann Astrid, Qin Yuyan, Kweyamba Prisca A, Lwetoijera Dickson Wilson, Windbichler Nikolai, Moore Sarah, Christophides George K, Vlachou Dina
Department of Life Sciences, Imperial College London, London, UK.
Environmental Health and Ecological Sciences, Ifakara Health Institute, Bagamoyo, Tanzania.
Commun Biol. 2025 Apr 30;8(1):683. doi: 10.1038/s42003-025-08033-8.
The transition from ookinete to oocyst is a critical step in the Plasmodium falciparum lifecycle and an important target for malaria transmission-blocking strategies. PfPIMMS43, a surface protein of P. falciparum ookinetes and sporozoites, is critical for this transition and aids the parasite in evading mosquito immune responses. Previous studies demonstrated that polyclonal PfPIMMS43 antibodies reduced P. falciparum infection in Anopheles mosquitoes. Here, building on these findings, we have developed high-affinity single-domain VHH antibodies (nanobodies) derived from llama heavy-chain-only antibodies. We have shown that these nanobodies bind both recombinant and endogenous PfPIMMS43 produced by P. falciparum ookinetes in the mosquito midgut. Importantly, they significantly reduce infection intensity and prevalence of laboratory and field strains of P. falciparum in An. coluzzii and An. gambiae, respectively. Epitope mapping has revealed that the nanobodies target conserved regions in the second half of PfPIMMS43, with homology modelling confirming epitope accessibility. These findings establish PfPIMMS43 as a promising transmission-blocking target. To enhance malaria control and elimination efforts, we propose an innovative strategy in which genetically modified mosquitoes express PfPIMMS43-specific nanobodies in their midguts and spread this trait in wild mosquito populations via gene drive technology.
从动合子到卵囊的转变是恶性疟原虫生命周期中的关键步骤,也是疟疾传播阻断策略的重要靶点。PfPIMMS43是恶性疟原虫动合子和子孢子的一种表面蛋白,对这一转变至关重要,并有助于寄生虫逃避蚊子的免疫反应。先前的研究表明,多克隆PfPIMMS43抗体可降低按蚊体内的恶性疟原虫感染。在此基础上,我们开发了源自羊驼仅重链抗体的高亲和力单域VHH抗体(纳米抗体)。我们已经证明,这些纳米抗体能够结合由疟原虫动合子在蚊子中肠产生的重组和内源性PfPIMMS43。重要的是,它们分别显著降低了恶性疟原虫实验室菌株和野外菌株在科氏按蚊和冈比亚按蚊中的感染强度和感染率。表位作图显示,纳米抗体靶向PfPIMMS43后半部分的保守区域,同源建模证实了表位的可及性。这些发现确立了PfPIMMS43作为一个有前景的传播阻断靶点。为了加强疟疾控制和消除工作,我们提出了一种创新策略,即转基因蚊子在其肠道中表达PfPIMMS43特异性纳米抗体,并通过基因驱动技术在野生蚊子种群中传播这一特性。