Hao Jian-Hong, Kang Xueting, Zhang Lingqian, Chen Jiayi, Wang Dan, Dong Shuqi, Li Xiaorui, Gao Lulu, Yang Guanghui, Yuan Xiangyang, Chu Xiaoqian, Wang Jia-Gang
HouJi Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taigu, China.
State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, China.
Plant Cell Environ. 2025 Aug;48(8):6043-6046. doi: 10.1111/pce.15597. Epub 2025 Apr 29.
Plants employ peptide ligands to coordinate development and integrate environmental signals via dedicated cascades (#ref-0013). Epidermal patterning factor (EPF), plays a significant role in regulating stomatal density, seed germination and panicle development (#ref-0008). EPF/EPFL enhance drought tolerance by reducing stomatal density have been reported in multiple species, including Hordeum vulgare, Arabidopsis thaliana, Populus spp., Vitis vinifera, Sorghum bicolor and Brassica napus (#ref-0001). Our previous study has shown that EPF can mediate drought resistance in foxtail millet by regulating stomatal density (#ref-0004). Furthermore, evidence suggests that plants can regulate photosynthesis through stomatal modification, ultimately enhancing yield (#ref-0005). Beyond stomatal density regulation, the EPF/EPFL gene family modulates seed germination through phytohormone signalling and regulates inflorescence development via ligand-receptor interactions (#ref-0007). OsEPFLs act as upstream ligands for the OsER1 receptor, activating the MAPK signalling cascade to regulate panicle morphogenesis (#ref-0002). In this study, we sought to elucidate how SiEPF2 balances drought resistance and yield in foxtail millet by modulating stomatal density and panicle morphology. Our findings not only provide novel insights into SiEPF2's role in abiotic stress responses but also contribute valuable genetic resources for high-yield breeding programmes in millet crops.
植物利用肽配体通过特定的信号级联来协调发育并整合环境信号(#参考文献-0013)。表皮模式因子(EPF)在调节气孔密度、种子萌发和穗发育中发挥着重要作用(#参考文献-0008)。在包括大麦、拟南芥、杨树、葡萄、高粱和甘蓝型油菜在内的多个物种中,均已报道EPF/EPFL通过降低气孔密度来增强耐旱性(#参考文献-0001)。我们之前的研究表明,EPF可通过调节气孔密度来介导谷子的抗旱性(#参考文献-0004)。此外,有证据表明植物可通过气孔调节来调控光合作用,最终提高产量(#参考文献-0005)。除了调节气孔密度外,EPF/EPFL基因家族还通过植物激素信号传导调节种子萌发,并通过配体-受体相互作用调控花序发育(#参考文献-0007)。OsEPFLs作为OsER1受体的上游配体,激活MAPK信号级联以调节穗形态发生(#参考文献-0002)。在本研究中,我们试图阐明SiEPF2如何通过调节气孔密度和穗形态来平衡谷子的抗旱性和产量。我们的研究结果不仅为SiEPF2在非生物胁迫响应中的作用提供了新的见解,也为谷子作物的高产育种计划贡献了宝贵的遗传资源。