Trenzinger Christoph, Kopittke Caroline, Kalousková Barbora, Šikanić Nemanja, Bishara Marina, Schütz Gerhard J, Brameshuber Mario
Institute of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.
Lab Chip. 2025 Apr 30. doi: 10.1039/d5lc00248f.
Mechanical stimuli are an integral part of the natural cellular microenvironment, influencing cell growth, differentiation, and survival, particularly in mechanically challenging environments like tumors. These stimuli are also crucial in the T-cell microenvironment, where they play a role in antigen recognition and pathogen detection. To study T-cell mechanobiology effectively, methods must replicate these mechanical stimuli induced by compression, tension or shear flow, in the presence of antigen-presenting cells (APCs). While custom-made microdevices and microfluidic chips have successfully observed bulk cell behavior under mechanical strain, no existing device fully replicated the T-cell mechanoenvironment comprehensively. In this study, we developed a microdevice that integrates the mechanoenvironmental aspects of an APC mimicry with compression under live-cell imaging conditions. This device allows for precise confinement of cells between two glass surfaces, which can be individually coated with functional bio-interfaces. The microdevice is reusable and enables presetting of confinement heights, manual seeding of cells and the assembly of components directly at the microscope. To validate our microdevice we confined primary mouse T-cells on different APC-mimicking supported lipid bilayers while monitoring their morphology and migratory behaviour over time. To study the effect of confinement on TCR signalling, we tracked intracellular calcium levels and quantified Erk1/2 phosphorylation by immunostaining. We observed that T-cell morphology and motility are affected by confinement but also by bilayer composition. Moreover our findings suggest that confinement, despite not interfering with T-cell activation, might increase TCR background signalling in resting T-cells. Importantly, our microdevice is not limited to T-cell research; it can also serve as a platform for studying mechanical stimulation in other cell types, cell aggregates like spheroids and organoids, or even tissue samples in the presence of various bio-interfaces.
机械刺激是天然细胞微环境不可或缺的一部分,影响着细胞的生长、分化和存活,在肿瘤等机械挑战性环境中尤为如此。这些刺激在T细胞微环境中也至关重要,它们在抗原识别和病原体检测中发挥作用。为了有效地研究T细胞力学生物学,方法必须在抗原呈递细胞(APC)存在的情况下,复制由压缩、拉伸或剪切流诱导的这些机械刺激。虽然定制的微型设备和微流控芯片已成功观察到机械应变下的大量细胞行为,但现有的设备都没有全面地完全复制T细胞的力学环境。在本研究中,我们开发了一种微型设备,该设备在活细胞成像条件下,将APC模拟的力学环境方面与压缩相结合。该设备允许将细胞精确限制在两个玻璃表面之间,这两个玻璃表面可以分别涂覆功能性生物界面。该微型设备可重复使用,并能够预设限制高度、手动接种细胞以及直接在显微镜下组装组件。为了验证我们的微型设备,我们将原代小鼠T细胞限制在不同的APC模拟支持脂质双分子层上,同时随时间监测它们的形态和迁移行为。为了研究限制对TCR信号传导的影响,我们通过免疫染色跟踪细胞内钙水平并量化Erk1/2磷酸化。我们观察到T细胞的形态和运动性不仅受限制影响,还受双分子层组成的影响。此外,我们的研究结果表明,尽管限制不干扰T细胞激活,但可能会增加静息T细胞中的TCR背景信号。重要的是,我们的微型设备不仅限于T细胞研究;它还可以作为一个平台,用于研究其他细胞类型、细胞聚集体(如球体和类器官)甚至存在各种生物界面的组织样本中的机械刺激。