协议:预防针对软目标和拥挤场所的恐怖袭击的情境犯罪预防措施:证据与差距图

PROTOCOL: Situational Crime Prevention Measures to Prevent Terrorist Attacks Against Soft Targets and Crowded Places: An Evidence and Gap Map.

作者信息

Marchment Zoe, Clemmow Caitlin, Gill Paul

机构信息

University College London London UK.

出版信息

Campbell Syst Rev. 2025 Apr 28;21(2):e70040. doi: 10.1002/cl2.70040. eCollection 2025 Jun.

Abstract

This is the protocol for a Campbell systematic review. The objectives are as follows. The EGM has three main objectives: (1) Identify the strength (in terms of evidence quality) and depth (in terms of volume of evidence) of evidence base on the efficacy of situational crime prevention measures in preventing terrorist attacks against soft targets and crowded places. (2) Identify the heterogeneity in the effects of situational crime prevention measures against terrorist attacks and link this to issues related to context and implementation. (3) Identify the mechanisms through which situational crime prevention measures have an effect on terrorist attacks. To achieve these objectives, an EGM will seek out reliable quantitative evidence on effect and qualitative evidence on mechanisms, moderators, implementation and economics. Resultingly, it will be possible to identify research gaps and evidence imbalances to facilitate research investment, identify gaps and topics for new research, and provide a foundation for systematic reviews by showing where sufficient evidence exists for aggregation. The underpinning programme of work will result in the presentation of rigorous empirical research on this topic to help researchers and decision-makers understand the available evidence.

摘要

这是一项坎贝尔系统评价的方案。目标如下。证据地图有三个主要目标:(1) 确定基于情境预防犯罪措施在预防针对软目标和拥挤场所的恐怖袭击方面的效力的证据强度(就证据质量而言)和深度(就证据量而言)。(2) 确定情境预防犯罪措施对恐怖袭击影响的异质性,并将其与背景和实施相关问题联系起来。(3) 确定情境预防犯罪措施对恐怖袭击产生影响的机制。为实现这些目标,证据地图将寻找关于效果的可靠定量证据以及关于机制、调节因素、实施和经济学的定性证据。因此,将有可能识别研究差距和证据失衡,以促进研究投资,确定新研究的差距和主题,并通过展示何处存在足够的证据进行汇总,为系统评价提供基础。基础工作方案将产生关于该主题的严谨实证研究,以帮助研究人员和决策者了解现有证据。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索