Shi Haoran, Kuang Feng, Huo Huanxin, Gao Yihong, Duan Xin, Shen Jingjie, Wan Jianyong, Li Yanmei, Du Guanben, Yang Long
Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China.
Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
Nano Lett. 2025 May 14;25(19):7835-7844. doi: 10.1021/acs.nanolett.5c00985. Epub 2025 Apr 30.
This study develops a Janus-structured hydrogel sensor (P(AA--PNIPAM/CDs)) through template-assisted copolymerization of acrylic acid and -isopropylacrylamide with dopamine-cellulose carbon dots (CDs). The hydrogel demonstrates temperature-responsive strain sensing regulation and enhanced interfacial adhesion, achieving remarkable peel strengths of 237.8 N m (air, 25 °C) and 42.7 N m (water, 50 °C). CD incorporation improves conductivity (1.219 mS cm) while reinforcing dynamic adhesion through hydrogen bonding and π-π interactions. The dual-responsive hydrogel exhibits exceptional joint motion monitoring capabilities across diverse environments, maintaining a stable electrical signal output during repetitive stretching (100% strain). Its temperature-modulated underwater adhesion and strain-sensitive conductivity enable the precise detection of both macroscopic movements (joint flexion) and subtle physiological signals (pulse waves). These synergistic properties position P(AA--PNIPAM/CDs) as a promising candidate for next-generation smart sensors in athletic monitoring and aquatic robotics, particularly in addressing challenges in underwater wearable electronics and adaptive human-machine interfaces.
本研究通过丙烯酸和N-异丙基丙烯酰胺与多巴胺-纤维素碳点(CDs)的模板辅助共聚,开发了一种双面结构水凝胶传感器(P(AA--PNIPAM/CDs))。该水凝胶表现出温度响应应变传感调节和增强的界面粘附力,在25°C空气中的剥离强度达到237.8 N m,在50°C水中的剥离强度达到42.7 N m。掺入CDs可提高导电性(1.219 mS cm),同时通过氢键和π-π相互作用增强动态粘附力。这种双响应水凝胶在各种环境中均表现出出色的关节运动监测能力,在重复拉伸(100%应变)过程中保持稳定的电信号输出。其温度调制的水下粘附力和应变敏感的导电性能够精确检测宏观运动(关节弯曲)和细微的生理信号(脉搏波)。这些协同特性使P(AA--PNIPAM/CDs)成为运动监测和水下机器人领域下一代智能传感器的有前途的候选材料,特别是在解决水下可穿戴电子设备和自适应人机界面方面的挑战时。