Suppr超能文献

异构黎曼少样本学习网络

Heterogeneous Riemannian Few-Shot Learning Network.

作者信息

Chen Jie, Li Lingling, Jiao Licheng, Liu Fang, Liu Xu, Guo Yuwei, Chen Puhua, Ma Wenping

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Sep;36(9):16507-16520. doi: 10.1109/TNNLS.2025.3561930.

Abstract

How to learn and accurately distinguish new concepts from few samples, as humans do, is a long-standing concern in artificial intelligence (AI). Studies in brain science and neuroscience have shown that human brain perception is based on nonlinear manifolds, and high-dimensional manifolds can facilitate concept learning in neural circuits. Based on this inspiration, in this paper, we propose a heterogeneous Riemannian few-shot learning network (HRFL-Net), which is the first few-shot learning method to perform end-to-end deep learning on heterogeneous Riemannian manifolds. Specifically, to enhance the geometric invariance of the image representation, the image features are projected into three heterogeneous Riemannian manifold spaces. Then, the implicit Riemannian kernel function maps the manifolds to the separable high-dimensional reproducing Hilbert space. It is assumed that the embedded kernel features of the complementary manifolds are mapped to the same common subspace. Thus, a novel neural network-based Riemannian metric learning method is designed to solve the subspace feature vectors by imposing orthogonal normalized projection, which overcomes the data extension limitation of the Riemannian metric. Finally, with the optimization objective of increasing the interclass distance and decreasing the intraclass distance in Hilbert space, the HRFL-Net is trained with end-to-end stochastic optimization, and the optimal aggregation subspace is learned during the gradient descent process. Thus, the proposed HRFL-Net can be easily generalized to challenging nonconvex data. The evaluation of four public datasets shows that the proposed HRFL-Net has significant superiority and also achieves competitive results compared with the state-of-the-art methods.

摘要

如何像人类一样从少量样本中学习并准确区分新概念,一直是人工智能(AI)领域长期关注的问题。脑科学和神经科学的研究表明,人类大脑感知基于非线性流形,高维流形有助于神经回路中的概念学习。基于这一灵感,在本文中,我们提出了一种异构黎曼少样本学习网络(HRFL-Net),这是第一种在异构黎曼流形上进行端到端深度学习的少样本学习方法。具体来说,为了增强图像表示的几何不变性,将图像特征投影到三个异构黎曼流形空间中。然后,隐式黎曼核函数将流形映射到可分离的高维再生希尔伯特空间。假设互补流形的嵌入核特征被映射到同一个公共子空间。因此,设计了一种基于神经网络的新型黎曼度量学习方法,通过施加正交归一化投影来求解子空间特征向量,克服了黎曼度量的数据扩展限制。最后,以增加希尔伯特空间中的类间距离和减小类内距离为优化目标,通过端到端随机优化对HRFL-Net进行训练,并在梯度下降过程中学习最优聚合子空间。因此,所提出的HRFL-Net可以很容易地推广到具有挑战性的非凸数据。对四个公共数据集的评估表明,所提出的HRFL-Net具有显著优势,与现有最先进方法相比也取得了有竞争力的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验