Ditte Matej, Barborini Matteo, Tkatchenko Alexandre
Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg.
HPC Platform, University of Luxembourg, L-4364 Esch-sur-Alzette, Luxembourg.
J Chem Theory Comput. 2025 May 13;21(9):4466-4480. doi: 10.1021/acs.jctc.5c00108. Epub 2025 Apr 30.
We present a comprehensive investigation of the El-QDO embedding method [ , 228001 (2023)], where molecular systems described through the electronic Hamiltonian are immersed in a bath of charged quantum harmonic oscillators, i.e., quantum Drude oscillators (QDOs). In the El-QDO model, the entire system of electrons and drudons─the quantum particles in the QDOs─is modeled through a single Hamiltonian which is solved through quantum Monte Carlo (QMC) methods. We first describe the details of the El-QDO Hamiltonian, of the proposed El-QDO ansatz, and of the QMC algorithms implemented to integrate both electronic and drudonic degrees of freedom. Then we analyze short-range regularization functions for the interacting potential between electrons and QDOs in order to accurately treat equilibrium and repulsive regions, resolving the overpolarization error that occurs between the electronic system and the environment. After benchmarking various regularization (damping) functions on the cases of argon and water dimers, the El-QDO method is applied to study the solvation energies of the benzene and water dimers, verifying the accuracy of the El-QDO approach compared to accurate fully electronic ab initio calculations. Furthermore, through the comparison of the El-QDO interaction energies with the components of Symmetry-Adapted Perturbation Theory calculations, we illustrate the El-QDO's explicit many-body treatment of electrostatic, polarization, and dispersion interactions between the electronic subsystem and the environment.
我们对埃尔 - 量子德鲁德振子(El-QDO)嵌入方法[ , 228001 (2023)]进行了全面研究,其中通过电子哈密顿量描述的分子系统被浸没在带电量子谐振子的浴中,即量子德鲁德振子(QDOs)。在埃尔 - QDO模型中,电子和德鲁顿(QDO中的量子粒子)的整个系统通过一个单一的哈密顿量建模,并通过量子蒙特卡罗(QMC)方法求解。我们首先描述了埃尔 - QDO哈密顿量、所提出的埃尔 - QDO假设以及为整合电子和德鲁顿自由度而实现的QMC算法的细节。然后,我们分析了电子与QDO之间相互作用势的短程正则化函数,以便准确处理平衡和排斥区域,解决电子系统与环境之间出现的过极化误差。在对氩和水二聚体的情况对各种正则化(阻尼)函数进行基准测试之后,埃尔 - QDO方法被应用于研究苯和水二聚体的溶剂化能,与精确的全电子从头算计算相比,验证了埃尔 - QDO方法的准确性。此外,通过将埃尔 - QDO相互作用能与对称适配微扰理论计算的分量进行比较,我们展示了埃尔 - QDO对电子子系统与环境之间静电、极化和色散相互作用的显式多体处理。