Suppr超能文献

具有原位优化的局域化基函数的可相互极化的QM/MM 模型。

Mutually polarizable QM/MM model with in situ optimized localized basis functions.

机构信息

School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom.

Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA.

出版信息

J Chem Phys. 2019 Feb 21;150(7):074103. doi: 10.1063/1.5080384.

Abstract

We extend our recently developed quantum-mechanical/molecular mechanics (QM/MM) approach [Dziedzic et al., J. Chem. Phys. 145, 124106 (2016)] to enable in situ optimization of the localized orbitals. The quantum subsystem is described with onetep linear-scaling density functional theory and the classical subsystem - with the AMOEBA polarizable force field. The two subsystems interact via multipolar electrostatics and are fully mutually polarizable. A total energy minimization scheme is employed for the Hamiltonian of the coupled QM/MM system. We demonstrate that, compared to simpler models using fixed basis sets, the additional flexibility offered by in situ optimized basis functions improves the accuracy of the QM/MM interface, but also poses new challenges, making the QM subsystem more prone to overpolarization and unphysical charge transfer due to increased charge penetration. We show how these issues can be efficiently solved by replacing the classical repulsive van der Waals term for QM/MM interactions with an interaction of the electronic density with a fixed, repulsive MM potential that mimics Pauli repulsion, together with a modest increase in the damping of QM/MM polarization. We validate our method, with particular attention paid to the hydrogen bond, in tests on water-ion pairs, the water dimer, first solvation shells of neutral and charged species, and solute-solvent interaction energies. As a proof of principle, we determine suitable repulsive potential parameters for water, K, and Cl. The mechanisms we employed to counteract the unphysical overpolarization of the QM subsystem are demonstrated to be adequate, and our approach is robust. We find that the inclusion of explicit polarization in the MM part of QM/MM improves agreement with fully QM calculations. Our model permits the use of minimal size QM regions and, remarkably, yields good energetics across the well-balanced QM/MM interface.

摘要

我们将最近开发的量子力学/分子力学(QM/MM)方法[Dziedzic 等人,J. Chem. Phys. 145, 124106 (2016)]扩展到能够进行原位优化局部轨道。量子子系统使用 OneTep 线性标度密度泛函理论描述,经典子系统使用 AMOEBA 极化力场描述。两个子系统通过多极静电相互作用相互作用,并且完全相互极化。采用总能量最小化方案来处理耦合 QM/MM 系统的哈密顿量。我们证明,与使用固定基组的更简单模型相比,通过原位优化基函数提供的额外灵活性可以提高 QM/MM 界面的准确性,但也带来了新的挑战,使得 QM 子系统更容易因电荷穿透而过度极化和发生非物理电荷转移。我们展示了如何通过用电子密度与固定、排斥 MM 势相互作用来替换 QM/MM 相互作用的经典排斥范德华项来有效地解决这些问题,该 MM 势模拟了 Pauli 排斥,同时适度增加 QM/MM 极化的阻尼。我们特别关注氢键,在水-离子对、水二聚体、中性和带电物种的第一溶剂化壳以及溶质-溶剂相互作用能的测试中验证了我们的方法。作为原理验证,我们确定了水、K 和 Cl 的合适排斥势参数。我们采用的对抗 QM 子系统非物理过度极化的机制被证明是充分的,并且我们的方法是稳健的。我们发现,在 QM/MM 的 MM 部分中包含显式极化可以提高与完全 QM 计算的一致性。我们的模型允许使用最小尺寸的 QM 区域,并且令人惊讶的是,在平衡良好的 QM/MM 界面上可以得到良好的能量学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验