Bluhm Alexandra, Xiang Wei, Wien Frank, Thureau Aurelien, Chevreuil Maelenn, Raynal Bertrand, Geissler Stefanie, Wermann Michael, Schilling Stephan, Bénas Philippe, Hartlage-Rübsamen Maike, Schulze Anja, Sauter Claude, Roßner Steffen
Paul Flechsig Institute - Centre for Neuropathology and Brain Research, University of Leipzig, 04103 Leipzig, Germany.
University Hospital Erlangen, Department Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany.
ACS Chem Neurosci. 2025 May 21;16(10):1919-1936. doi: 10.1021/acschemneuro.5c00106. Epub 2025 Apr 30.
α-Synuclein (aSyn) aggregation represents a key event in the neurodegenerative cascade of synucleinopathies. Initially, aSyn appears as an intrinsically disordered protein. However, its structural flexibility allows aSyn to either adopt α-helical conformations, relevant for physiological functions at presynaptic vesicles, or form β-strand-rich aggregates, leading to toxic oligomers. This relation between structure, function, and toxicity can be influenced by post-translational modifications such as the recently identified glutaminyl cyclase-catalyzed pyroglutamate (pE) modification. Here, we investigated (i) structural characteristics of monomeric, dimeric, and oligomeric states of N-terminal truncated, pE-modified aSyn variants, pE24-, pE62-, and pE79-aSyn by a complementary biophysical approach including DLS, SEC-MALS, SRCD, SEC-SAXS, and AUC and (ii) the toxicity of oligomeric pE-aSyn variants compared to full-length aSyn. Overall, pE62-aSyn showed an immediate fibril formation, reflecting the aggregation-prone properties of this particular variant. Furthermore, in a membrane-like environment, the secondary aSyn structure shifted toward α-helical folding depending on the degree of N-terminal truncation. pE79-aSyn showed a significantly reduced level of structural adaptation, reflecting compromised functions at presynaptic vesicles. In addition, the comparative analysis indicates the presence of a dimeric aSyn intermediate, the initial and potentially crucial step in aSyn aggregation, and supports the hypothesis of a toxic porous oligomeric state. For the first time, based on SAXS data, EOM models of the dimeric aSyn state are proposed.
α-突触核蛋白(aSyn)聚集是突触核蛋白病神经退行性级联反应中的关键事件。最初,aSyn表现为一种内在无序的蛋白质。然而,其结构灵活性使aSyn既能呈现与突触前囊泡生理功能相关的α-螺旋构象,也能形成富含β-链的聚集体,从而产生有毒的寡聚体。结构、功能和毒性之间的这种关系可受翻译后修饰的影响,例如最近发现的谷氨酰胺环化酶催化的焦谷氨酸(pE)修饰。在此,我们通过包括动态光散射(DLS)、尺寸排阻色谱-多角度激光散射(SEC-MALS)、同步辐射圆二色光谱(SRCD)、尺寸排阻色谱-小角X射线散射(SEC-SAXS)和分析型超速离心(AUC)在内的互补生物物理方法,研究了(i)N端截短的、pE修饰的aSyn变体pE24-aSyn、pE62-aSyn和pE79-aSyn的单体、二聚体和寡聚体状态的结构特征,以及(ii)与全长aSyn相比,寡聚体pE-aSyn变体的毒性。总体而言,pE62-aSyn显示出立即形成纤维,反映了该特定变体易于聚集的特性。此外,在类似膜的环境中,aSyn的二级结构根据N端截短程度向α-螺旋折叠转变。pE79-aSyn显示出结构适应性水平显著降低,反映了突触前囊泡功能受损。此外,比较分析表明存在二聚体aSyn中间体,这是aSyn聚集的初始且可能关键的步骤,并支持有毒多孔寡聚体状态的假说。首次基于小角X射线散射数据提出了二聚体aSyn状态的电子显微镜(EOM)模型。