Suppr超能文献

一种基于规则的在磁共振成像(MRI)图像上自动定位腰椎椎体的方法。

A rule-based method to automatically locate lumbar vertebral bodies on MRI images.

作者信息

Xiberta Pau, Vila Màrius, Ruiz Marc, Julià I Juanola Adrià, Puig Josep, Vilanova Joan C, Boada Imma

机构信息

Graphics and Imaging Laboratory, Universitat de Girona, Girona, 17003, Catalonia.

Graphics and Imaging Laboratory, Universitat de Girona, Girona, 17003, Catalonia.

出版信息

Comput Biol Med. 2025 Jun;192(Pt A):110032. doi: 10.1016/j.compbiomed.2025.110032. Epub 2025 Apr 29.

Abstract

BACKGROUND

Segmentation is a critical process in medical image interpretation. It is also essential for preparing training datasets for machine learning (ML)-based solutions. Despite technological advancements, achieving fully automatic segmentation is still challenging. User interaction is required to initiate the process, either by defining points or regions of interest, or by verifying and refining the output. One of the complex structures that requires semi-automatic segmentation procedures or manually defined training datasets is the lumbar spine. Automating the placement of a point within each lumbar vertebral body could significantly reduce user interaction in these procedures.

METHOD

A new method for automatically locating lumbar vertebral bodies in sagittal magnetic resonance images (MRI) is presented. The method integrates different image processing techniques and relies on the vertebral body morphology. Testing was mainly performed using 50 MRI scans that were previously annotated manually by placing a point at the centre of each lumbar vertebral body. A complementary public dataset was also used to assess robustness. Evaluation metrics included the correct labelling of each structure, the inclusion of each point within the corresponding vertebral body area, and the accuracy of the locations relative to the vertebral body centres using root mean squared error (RMSE) and mean absolute error (MAE). A one-sample Student's t-test was also performed to find the distance beyond which differences are considered significant (α = 0.05).

RESULTS

All lumbar vertebral bodies from the primary dataset were correctly labelled, and the average RMSE and MAE between the automatic and manual locations were less than 5 mm. Distances to the vertebral body centres were found to be significantly less than 4.33 mm with a p-value < 0.05, and significantly less than half the average minimum diameter of a lumbar vertebral body with a p-value < 0.00001. Results from the complementary public dataset include high labelling and inclusion rates (85.1% and 94.3%, respectively), and similar accuracy values.

CONCLUSION

The proposed method successfully achieves robust and accurate automatic placement of points within each lumbar vertebral body. The automation of this process enables the transition from semi-automatic to fully automatic methods, thus reducing error-prone and time-consuming user interaction, and facilitating the creation of training datasets for ML-based solutions.

摘要

背景

分割是医学图像解读中的关键过程。对于为基于机器学习(ML)的解决方案准备训练数据集而言,它也至关重要。尽管技术不断进步,但实现全自动分割仍具有挑战性。需要用户交互来启动该过程,方式可以是定义点或感兴趣区域,或者是验证和完善输出。腰椎是需要半自动分割程序或手动定义训练数据集的复杂结构之一。在这些程序中,自动在每个腰椎椎体内放置一个点可以显著减少用户交互。

方法

提出了一种在矢状面磁共振图像(MRI)中自动定位腰椎椎体的新方法。该方法整合了不同的图像处理技术,并依赖于椎体形态。测试主要使用了50例MRI扫描,这些扫描之前已通过在每个腰椎椎体中心放置一个点进行了手动标注。还使用了一个补充性公共数据集来评估稳健性。评估指标包括每个结构的正确标注、每个点是否包含在相应椎体区域内,以及使用均方根误差(RMSE)和平均绝对误差(MAE)相对于椎体中心的位置准确性。还进行了单样本学生t检验,以找出差异被认为显著的距离(α = 0.05)。

结果

主要数据集中的所有腰椎椎体均被正确标注,自动定位和手动定位之间的平均RMSE和MAE小于5毫米。发现到椎体中心的距离显著小于4.33毫米,p值<0.05,并且显著小于腰椎椎体平均最小直径的一半,p值<0.00001。补充性公共数据集的结果包括高标注率和包含率(分别为85.1%和94.3%),以及相似的准确性值。

结论

所提出的方法成功实现了在每个腰椎椎体内稳健且准确地自动放置点。这一过程的自动化使得从半自动方法向全自动方法转变成为可能,从而减少了容易出错且耗时的用户交互,并便于为基于ML的解决方案创建训练数据集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验