Mathew Silpa, Hong Jong-Kook, Kim Ji-Hoon, Chen Meilian, Hur Jin
Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea.
Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea.
Mar Environ Res. 2025 Aug;209:107182. doi: 10.1016/j.marenvres.2025.107182. Epub 2025 Apr 25.
The Arctic region, warming at approximately four times the global average, is experiencing rapid climatic shifts that could result in a summer ice-free Arctic Ocean by mid-century. This review compiles recent studies on Arctic biogeochemistry, highlighting the significant role of continental runoff-including rivers, permafrost, and glaciers-in nutrient cycling, carbon dynamics, and pelagic primary production. Particularly in the East Siberian Shelf, terrestrial inputs substantially contribute to the export of dissolved organic carbon (DOC) and nutrients, thus impacting regional ecosystems and primary productivity. Subsea permafrost emerges as a key DOC exporter, with estimated fluxes reaching 700 to 1000 Tg yr under extreme scenarios. In the Arctic's low-light environment, photodegradation plays a vital role in transforming terrestrial dissolved organic matter (DOM) into nutrients. Notably, phytoplankton levels in the Arctic Ocean have surged by about 30 % since the 1990s. Projections indicate that by this century's end, the Arctic Net Primary Productivity (NPP) could approach 700 Tg C yr, with a more significant increase in the Eurasian Arctic than in the American and Barents Sea regions. This trend is mainly due to terrestrial inputs and permafrost thawing effects. Research in the Arctic, particularly on biogeochemistry and phytoplankton dynamics in response to climate change, faces challenges from extreme weather, data scarcity, and complex environmental processes. Therefore, continuous monitoring and targeted research, especially in the East Siberian Shelf and subsea permafrost regions, are crucial for overcoming these challenges and improving our understanding of the changing Arctic Ocean ecosystem.
北极地区的变暖速度约为全球平均水平的四倍,正在经历快速的气候变化,这可能导致到本世纪中叶北冰洋在夏季无冰。本综述汇编了近期关于北极生物地球化学的研究,强调了包括河流、永久冻土和冰川在内的陆地径流在营养物质循环、碳动态和海洋初级生产中的重要作用。特别是在东西伯利亚海架,陆地输入对溶解有机碳(DOC)和营养物质的输出有很大贡献,从而影响区域生态系统和初级生产力。海底永久冻土成为关键的DOC输出源,在极端情况下估计通量达到700至1000太克/年。在北极的低光照环境中,光降解在将陆地溶解有机物(DOM)转化为营养物质方面起着至关重要的作用。值得注意的是,自20世纪90年代以来,北冰洋的浮游植物水平激增了约30%。预测表明,到本世纪末,北极净初级生产力(NPP)可能接近700太克碳/年,欧亚北极地区的增长幅度将比美洲和巴伦支海地区更大。这一趋势主要归因于陆地输入和永久冻土融化的影响。北极地区的研究,特别是关于生物地球化学和浮游植物动态对气候变化的响应,面临着极端天气、数据稀缺和复杂环境过程等挑战。因此,持续监测和有针对性的研究,特别是在东西伯利亚海架和海底永久冻土区域,对于克服这些挑战和增进我们对不断变化的北冰洋生态系统的理解至关重要。