Suppr超能文献

拉曼液体活检:多发性硬化症诊断的新方法。

Raman liquid biopsy: a new approach to the multiple sclerosis diagnostics.

作者信息

Neupokoeva Anna, Bratchenko Ivan, Bratchenko Lyudmila, Khivintseva Elena, Shirolapov Igor, Shusharina Natalia, Khoimov Matvei, Zakharov Valery, Zakharov Alexander

机构信息

Department of Medical Physics, Mathematics and Computer Science, Samara State Medical University, Samara, Russia.

Laser and Biotechnical Systems Department, Samara National Research University, Samara, Russia.

出版信息

Front Neurol. 2025 Apr 16;16:1516712. doi: 10.3389/fneur.2025.1516712. eCollection 2025.

Abstract

BACKGROUND/OBJECTIVES: Despite the prevalence of multiple sclerosis, there is currently no biomarker by which this disease can be reliably identified. Existing diagnostic methods are either expensive or have low specificity. Therefore, the search for a diagnostic method with high specificity and sensitivity, and at the same time not requiring complex sample processing or expensive equipment, is urgent.

METHODS

The article discusses the use of blood serum surface enhanced Raman spectroscopy in combination with machine learning analysis to separate persons with multiple sclerosis and healthy individuals. As a machine learning method for Raman spectra processing the projection on latent structures-discriminant analysis was used.

RESULTS

Using the above methods, we have obtained possibility to separate persons with multiple sclerosis and healthy ones with an average specificity of 0.96 and an average sensitivity of 0.89. The main Raman bands for discrimination against multiple sclerosis and healthy individuals are 632, 721-735, 1,048-1,076 cm. In general, the study of the spectral properties of blood serum using surface enhanced Raman spectroscopy is a promising method for diagnosing multiple sclerosis, however, further detailed studies in this area are required.

摘要

背景/目的:尽管多发性硬化症很常见,但目前尚无能够可靠识别该疾病的生物标志物。现有的诊断方法要么昂贵,要么特异性低。因此,迫切需要寻找一种具有高特异性和敏感性,同时不需要复杂样本处理或昂贵设备的诊断方法。

方法

本文讨论了血清表面增强拉曼光谱结合机器学习分析用于区分多发性硬化症患者和健康个体的应用。作为拉曼光谱处理的机器学习方法,使用了潜在结构投影判别分析。

结果

使用上述方法,我们获得了区分多发性硬化症患者和健康个体的可能性,平均特异性为0.96,平均敏感性为0.89。区分多发性硬化症患者和健康个体的主要拉曼谱带为632、721 - 735、1048 - 1076 cm。总体而言,利用表面增强拉曼光谱研究血清的光谱特性是诊断多发性硬化症的一种有前景的方法,然而,该领域还需要进一步的详细研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b67f/12040660/1bd50905cfb5/fneur-16-1516712-g001.jpg

相似文献

1
Raman liquid biopsy: a new approach to the multiple sclerosis diagnostics.
Front Neurol. 2025 Apr 16;16:1516712. doi: 10.3389/fneur.2025.1516712. eCollection 2025.
2
Surface-enhanced Raman spectroscopy for characterization of filtrate portions of blood serum samples of typhoid patients.
Photodiagnosis Photodyn Ther. 2022 Dec;40:103199. doi: 10.1016/j.pdpdt.2022.103199. Epub 2022 Nov 9.
4
Comparison of surface enhanced Raman spectroscopy and Raman spectroscopy for the detection of breast cancer based on serum samples.
Spectrochim Acta A Mol Biomol Spectrosc. 2021 Feb 5;246:119034. doi: 10.1016/j.saa.2020.119034. Epub 2020 Oct 5.
6
Screening and staging for non-small cell lung cancer by serum laser Raman spectroscopy.
Spectrochim Acta A Mol Biomol Spectrosc. 2018 Aug 5;201:34-38. doi: 10.1016/j.saa.2018.04.002. Epub 2018 Apr 13.
8
Classification of skin cancer using convolutional neural networks analysis of Raman spectra.
Comput Methods Programs Biomed. 2022 Jun;219:106755. doi: 10.1016/j.cmpb.2022.106755. Epub 2022 Mar 21.
9
Raman spectroscopy of human skin for kidney failure detection.
J Biophotonics. 2021 Feb;14(2):e202000360. doi: 10.1002/jbio.202000360. Epub 2020 Nov 9.

本文引用的文献

1
Multi-branch attention Raman network and surface-enhanced Raman spectroscopy for the classification of neurological disorders.
Biomed Opt Express. 2024 May 1;15(6):3523-3540. doi: 10.1364/BOE.514196. eCollection 2024 Jun 1.
2
Raman-Based Techniques in Medical Applications for Diagnostic Tasks: A Review.
Int J Mol Sci. 2023 Oct 26;24(21):15605. doi: 10.3390/ijms242115605.
3
Carotenoids contribution in rapid diagnosis of multiple sclerosis by Raman spectroscopy.
Biochim Biophys Acta Gen Subj. 2023 Sep;1867(9):130395. doi: 10.1016/j.bbagen.2023.130395. Epub 2023 Jun 2.
4
Raman spectroscopy in chronic heart failure diagnosis based on human skin analysis.
J Biophotonics. 2023 Jul;16(7):e202300016. doi: 10.1002/jbio.202300016. Epub 2023 Apr 10.
6
Analyzing the serum of hemodialysis patients with end-stage chronic kidney disease by means of the combination of SERS and machine learning.
Biomed Opt Express. 2022 Aug 24;13(9):4926-4938. doi: 10.1364/BOE.455549. eCollection 2022 Sep 1.
8
Research on the difference between patients with coronary heart disease and healthy controls by surface enhanced Raman spectroscopy.
Spectrochim Acta A Mol Biomol Spectrosc. 2022 May 5;272:120997. doi: 10.1016/j.saa.2022.120997. Epub 2022 Feb 4.
9
Spectral signature of multiple sclerosis. Preliminary studies of blood fraction by ATR FTIR technique.
Biochem Biophys Res Commun. 2022 Feb 19;593:40-45. doi: 10.1016/j.bbrc.2022.01.046. Epub 2022 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验