Suppr超能文献

用于神经系统疾病分类的多分支注意力拉曼网络与表面增强拉曼光谱

Multi-branch attention Raman network and surface-enhanced Raman spectroscopy for the classification of neurological disorders.

作者信息

Xiong Changchun, Zhong Qingshan, Yan Denghui, Zhang Baihua, Yao Yudong, Qian Wei, Zheng Chengying, Mei Xi, Zhu Shanshan

机构信息

Research Institute of Medical and Biological Engineering, Ningbo University, Ningbo 315211, China.

Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China.

出版信息

Biomed Opt Express. 2024 May 1;15(6):3523-3540. doi: 10.1364/BOE.514196. eCollection 2024 Jun 1.

Abstract

Surface-enhanced Raman spectroscopy (SERS), a rapid, low-cost, non-invasive, ultrasensitive, and label-free technique, has been widely used in-situ and ex-situ biomedical diagnostics questions. However, analyzing and interpreting the untargeted spectral data remains challenging due to the difficulty of designing an optimal data pre-processing and modelling procedure. In this paper, we propose a Multi-branch Attention Raman Network (MBA-RamanNet) with a multi-branch attention module, including the convolutional block attention module (CBAM) branch, deep convolution module (DCM) branch, and branch weights, to extract more global and local information of characteristic Raman peaks which are more distinctive for classification tasks. CBAM, including channel and spatial aspects, is adopted to enhance the distinctive global information on Raman peaks. DCM is used to supplement local information of Raman peaks. Autonomously trained branch weights are applied to fuse the features of each branch, thereby optimizing the global and local information of the characteristic Raman peaks for identifying diseases. Extensive experiments are performed for two different neurological disorders classification tasks via untargeted serum SERS data. The results demonstrate that MBA-RamanNet outperforms commonly used CNN methods with an accuracy of 88.24% for the classification of healthy controls, mild cognitive impairment, Alzheimer's disease, and Non-Alzheimer's dementia; an accuracy of 90% for the classification of healthy controls, elderly depression, and elderly anxiety.

摘要

表面增强拉曼光谱(SERS)是一种快速、低成本、非侵入性、超灵敏且无需标记的技术,已被广泛用于原位和非原位生物医学诊断问题。然而,由于难以设计出最佳的数据预处理和建模程序,分析和解释非靶向光谱数据仍然具有挑战性。在本文中,我们提出了一种具有多分支注意力模块的多分支注意力拉曼网络(MBA-RamanNet),该模块包括卷积块注意力模块(CBAM)分支、深度卷积模块(DCM)分支和分支权重,以提取更多特征拉曼峰的全局和局部信息,这些信息对于分类任务更具独特性。采用包括通道和空间方面的CBAM来增强拉曼峰上独特的全局信息。DCM用于补充拉曼峰的局部信息。自主训练的分支权重用于融合每个分支的特征,从而优化特征拉曼峰的全局和局部信息以识别疾病。通过非靶向血清SERS数据对两种不同的神经疾病分类任务进行了广泛实验。结果表明,MBA-RamanNet在健康对照、轻度认知障碍、阿尔茨海默病和非阿尔茨海默病性痴呆的分类中,准确率达到88.24%,优于常用的CNN方法;在健康对照、老年抑郁症和老年焦虑症的分类中,准确率达到90%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/deb3/11166416/118bf735c30a/boe-15-6-3523-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验