健康人群和多种疾病中免疫衰老数据的多变量分析。

Multivariate analysis of immunosenescence data in healthy humans and diverse diseases.

作者信息

Añé-Kourí Ana Laura, Palomino Jorge Luis, Lorenzo-Luaces Patricia, Sanchez Lizet, Ledon Nuris, Pereira Karla, Hernandez Jenysbel de la Caridad, Suárez Gisela María, García Beatriz, González Amnely, Saavedra Danay, Lage Agustin

机构信息

Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba.

Biomedical Sciences Institute, Hasselt University, Hasselt, Belgium.

出版信息

Front Aging. 2025 Apr 16;6:1568034. doi: 10.3389/fragi.2025.1568034. eCollection 2025.

Abstract

INTRODUCTION

Immunosenescence is a dynamic process, where both genetic and environmental factors account for the substantial inter-individual variability. This paper integrates all the data on immunosenescence markers generated in our laboratory and describes the differences and/or similarities between individuals based on their biological conditions (immunosenescence markers) and their associations with chronological age and health status.

MATERIALS AND METHODS

The dataset consisted of immunological data from healthy donors, centenarians, patients diagnosed with chronic kidney disease, COVID-19 and non-small cell lung cancer (NSCLC), treatment-naïve or treated with platinum-based chemotherapy. To determine whether there are groups of immunologically different individuals despite their age or clinical condition, cluster analysis was performed. Canonical discriminant analysis was performed to determine which variables characterize each cluster.

RESULTS

There are differences in the expression of immunosenescence markers between healthy subjects and patients diagnosed with different pathological conditions, regardless of their age. Meanwhile, the distribution of the clusters indicates the presence of two separate groups of healthy participants, one of them characterized by a high frequency of naïve lymphocytes, and the other with high expression of terminally differentiated lymphocyte subsets. Advanced NSCLC treatment-naïve patients were in the same cluster as a group of healthy subjects. Additionally, centenarians belong to a different cluster than healthy subjects, suggesting they might have a unique immune signature.

CONCLUSION

The distribution of clusters appears to be more appropriate than univariate associations of single markers for health and disease research. The present work reveals which immune markers are relevant in different physiological and pathological contexts and indicates the need for deeper studies on the biological age of the immune system.

摘要

引言

免疫衰老 是一个动态过程,其中遗传和环境因素导致了个体间显著的差异。本文整合了我们实验室生成的所有关于免疫衰老标志物的数据,并根据个体的生物学状况(免疫衰老标志物)及其与实际年龄和健康状况的关联,描述了个体之间的差异和/或相似之处。

材料与方法

数据集包括来自健康供体、百岁老人、被诊断为慢性肾病、新冠肺炎和非小细胞肺癌(NSCLC)的患者的免疫学数据,这些患者未接受过治疗或接受过铂类化疗。为了确定是否存在尽管年龄或临床状况不同但免疫学上不同的个体组,进行了聚类分析。进行典型判别分析以确定哪些变量表征每个聚类。

结果

无论年龄如何,健康受试者与被诊断为不同病理状况的患者之间免疫衰老标志物的表达存在差异。同时,聚类分布表明存在两组不同的健康参与者,其中一组以高频率的初始淋巴细胞为特征,另一组以终末分化淋巴细胞亚群的高表达为特征。未接受过治疗的晚期NSCLC患者与一组健康受试者处于同一聚类中。此外,百岁老人与健康受试者属于不同的聚类,这表明他们可能具有独特的免疫特征。

结论

对于健康和疾病研究,聚类分布似乎比单一标志物的单变量关联更合适。目前的工作揭示了哪些免疫标志物在不同的生理和病理背景中是相关的,并表明需要对免疫系统的生物学年龄进行更深入的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d93/12040824/ac5fa3b36d75/fragi-06-1568034-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索