Suppr超能文献

基于农药的年龄相关性黄斑变性机器学习模型:2007 - 2008年美国国家健康与营养检查调查

Machine learning model for age related macular degeneration based on pesticides: the National Health and Nutrition Examination Survey 2007-2008.

作者信息

Liu Jiankang, Wang Bingli, Li Qiuming

机构信息

The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

出版信息

Front Public Health. 2025 Apr 16;13:1561913. doi: 10.3389/fpubh.2025.1561913. eCollection 2025.

Abstract

Age-related macular degeneration (AMD) is the most common cause of irreversible deterioration of vision in older adults. Previous studies have found that exposure to pesticides can lead to a worsening of AMD. In this paper, information on pesticide exposure and AMD from the National Health and Nutrition Examination Survey (NHANES) database was used to divide the data into a training set and a validation set. Firstly, the correlation between the variables in the model is analyzed. The model is then built using nine machine learning algorithms and verified on a validation set. Finally, it is found that the random forest model has high predictive value, and its Receiver Operating Characteristic (ROC) value is 0.75. Finally, SHapley additive interpretation (SHAP) analysis was used to rank the importance of each variable in the random forest model, and it was found that chlorpyrifos and malathion had quite significant effects on the occurrence and development of AMD.

摘要

年龄相关性黄斑变性(AMD)是老年人视力不可逆恶化的最常见原因。先前的研究发现,接触农药会导致AMD病情恶化。在本文中,利用来自国家健康与营养检查调查(NHANES)数据库的农药暴露和AMD信息,将数据分为训练集和验证集。首先,分析模型中变量之间的相关性。然后使用九种机器学习算法构建模型,并在验证集上进行验证。最后发现,随机森林模型具有较高的预测价值,其受试者工作特征(ROC)值为0.75。最后,使用SHapley加法解释(SHAP)分析对随机森林模型中每个变量的重要性进行排名,发现毒死蜱和马拉硫磷对AMD的发生和发展有相当显著的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fb2/12042703/23857e934a0d/fpubh-13-1561913-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验