Suppr超能文献

莱茵衣藻的一种突变体,缺乏鞭毛外动力蛋白臂但仍能游动。

A mutant of Chlamydomonas reinhardtii that lacks the flagellar outer dynein arm but can swim.

作者信息

Kamiya R, Okamoto M

出版信息

J Cell Sci. 1985 Mar;74:181-91. doi: 10.1242/jcs.74.1.181.

Abstract

A new type of Chlamydomonas mutant, which lacks the outer dynein arm but can swim, was isolated. Sodium dodecyl sulphate/polyacrylamide gel electrophoresis showed that four of the ten high-molecular-weight bands of dynein present in the wild-type axoneme are missing or diminished in the mutant axoneme. The mutant has a swimming rate of about 35 micrometers/s and a flagellar beat frequency of about 25 Hz, both of which are about 1/2.5 to 1/3 of those of the wild type. The mutant flagella beat with an asymmetric, cilia-type pattern, similar to the forward-swimming mode of the flagellar beating pattern of the wild type. However, unlike wild-type flagella, the mutant flagella never beat with a symmetrical waveform: when the cells were stimulated by intense light, the mutant transiently stopped beating its flagella, whereas the wild-type cell transiently swam backwards with the two flagella beating with a symmetrical waveform. Both wild-type and mutant cells could be demembranated by Nonidet P40 and their swimming reactivated by addition of Mg-ATP in the virtual absence of Ca2+. Double reciprocal plots of the beat frequency against ATP concentrations showed a linear relationship for both strains, yielding maximal frequencies of 44 Hz (wild-type) and 23 Hz (mutant). The mutant axonemes can be reactivated only when the Ca2+ concentration is lower than 10(-6) M: at pCa4, the wild-type axonemes beat with a symmetrical waveform, but the mutant axonemes showed no movement. These findings indicate that the outer dynein arm is dispensable for flagellar beating of the asymmetric waveform (forward-swimming mode), but not for beating of the symmetrical waveform (backward-swimming mode), and thus suggest the importance of the outer dynein arm in the switching of flagellar waveforms.

摘要

分离出一种新型衣藻突变体,其缺乏外动力蛋白臂但仍能游动。十二烷基硫酸钠/聚丙烯酰胺凝胶电泳显示,野生型轴丝中存在的十种高分子量动力蛋白条带中的四条在突变体轴丝中缺失或减少。该突变体的游动速度约为35微米/秒,鞭毛搏动频率约为25赫兹,两者均约为野生型的1/2.5至1/3。突变体鞭毛以不对称的纤毛型模式搏动,类似于野生型鞭毛搏动模式的向前游动模式。然而,与野生型鞭毛不同,突变体鞭毛从未以对称波形搏动:当细胞受到强光刺激时,突变体暂时停止鞭毛搏动,而野生型细胞则以对称波形搏动的两条鞭毛暂时向后游动。野生型和突变体细胞都可以用Nonidet P40去膜,并且在几乎没有Ca2+的情况下通过添加Mg-ATP使其游动重新激活。搏动频率与ATP浓度的双倒数图显示两种菌株呈线性关系,野生型的最大频率为44赫兹,突变体为23赫兹。只有当Ca2+浓度低于10^(-6) M时,突变体轴丝才能重新激活:在pCa4时,野生型轴丝以对称波形搏动,但突变体轴丝没有运动。这些发现表明,外动力蛋白臂对于不对称波形(向前游动模式)的鞭毛搏动是可有可无的,但对于对称波形(向后游动模式)的搏动则不是,因此表明外动力蛋白臂在鞭毛波形转换中的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验