文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于EfficientNetB0的糖尿病视网膜病变分级及黄斑水肿检测的端到端诊断系统

EfficientNetB0-Based End-to-End Diagnostic System for Diabetic Retinopathy Grading and Macular Edema Detection.

作者信息

Long Xin, Gan Fan, Fan Huimin, Qin WeiGuo, Li Xiaonan, Ma Rui, Wang Leran, Hu Rui, Xie Yilin, Chen Lei, Cao Jian, Shao Yinan, Liu Kangcheng, You Zhipeng

机构信息

Department of Fundus Diseases, The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, People's Republic of China.

Jiangxi Province Division of National Clinical Research Center for Ocular Diseases, Nanchang, Jiangxi, 330000, People's Republic of China.

出版信息

Diabetes Metab Syndr Obes. 2025 Apr 26;18:1311-1321. doi: 10.2147/DMSO.S506494. eCollection 2025.


DOI:10.2147/DMSO.S506494
PMID:40309724
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12042962/
Abstract

PURPOSE: This study aims to develop and validate a deep learning-based automated diagnostic system that utilizes fluorescein angiography (FFA) images for the rapid and accurate diagnosis of diabetic retinopathy (DR) and its complications. METHODS: We collected 19,031 FFA images from 2753 patients between June 2017 and March 2024 to construct and evaluate our analytical framework. The images were preprocessed and annotated for training and validating the deep learning model. The study employed a two-stage deep learning system: the first stage used EfficientNetB0 for a five-class classification task to differentiate between normal retinal conditions, various stages of DR, and post-laser treatment status; the second stage focused on images classified as abnormal in the first stage, further detecting the presence of diabetic macular edema (DME). Model performance was evaluated using multiple classification metrics, including accuracy, AUC, precision, recall, F1-score, and Cohen's kappa coefficient. RESULTS: In the first stage, the model achieved an accuracy of 0.7036 and an AUC of 0.9062 on the test set, demonstrating high accuracy and discriminative ability. In the second stage, the model achieved an accuracy of 0.7258 and an AUC of 0.7530, performing well. Additionally, through Grad-CAM (gradient-weighted class activation mapping), we visualized the most influential image regions in the model's decision-making process, enhancing the model's interpretability. CONCLUSION: This study successfully developed an end-to-end DR diagnostic system based on the EfficientNetB0 model. The system not only automates the grading of FFA images but also detects DME, significantly reducing the time required for image interpretation by clinicians and providing an effective tool to improve the efficiency and accuracy of DR diagnosis.

摘要

目的:本研究旨在开发并验证一种基于深度学习的自动诊断系统,该系统利用荧光素血管造影(FFA)图像对糖尿病视网膜病变(DR)及其并发症进行快速准确的诊断。 方法:我们收集了2017年6月至2024年3月期间2753例患者的19031张FFA图像,以构建和评估我们的分析框架。对图像进行预处理并标注,用于训练和验证深度学习模型。该研究采用了两阶段深度学习系统:第一阶段使用EfficientNetB0进行五类分类任务,以区分正常视网膜状况、DR的各个阶段以及激光治疗后的状态;第二阶段专注于在第一阶段被分类为异常的图像,进一步检测糖尿病性黄斑水肿(DME)的存在。使用多种分类指标评估模型性能,包括准确率、AUC、精确率、召回率、F1分数和科恩卡帕系数。 结果:在第一阶段,模型在测试集上的准确率达到0.7036,AUC为0.9062,显示出较高的准确性和判别能力。在第二阶段,模型的准确率达到0.7258,AUC为0.7530,表现良好。此外,通过Grad-CAM(梯度加权类激活映射),我们可视化了模型决策过程中最具影响力的图像区域,增强了模型的可解释性。 结论:本研究成功开发了一种基于EfficientNetB0模型的端到端DR诊断系统。该系统不仅实现了FFA图像分级的自动化,还能检测DME,显著减少了临床医生解读图像所需的时间,并提供了一种有效的工具来提高DR诊断的效率和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ff3/12042962/990c1f1e62e6/DMSO-18-1311-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ff3/12042962/c26cfd65d3b7/DMSO-18-1311-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ff3/12042962/1aac5da8ad73/DMSO-18-1311-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ff3/12042962/feca817fa80d/DMSO-18-1311-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ff3/12042962/990c1f1e62e6/DMSO-18-1311-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ff3/12042962/c26cfd65d3b7/DMSO-18-1311-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ff3/12042962/1aac5da8ad73/DMSO-18-1311-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ff3/12042962/feca817fa80d/DMSO-18-1311-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ff3/12042962/990c1f1e62e6/DMSO-18-1311-g0004.jpg

相似文献

[1]
EfficientNetB0-Based End-to-End Diagnostic System for Diabetic Retinopathy Grading and Macular Edema Detection.

Diabetes Metab Syndr Obes. 2025-4-26

[2]
ResViT FusionNet Model: An explainable AI-driven approach for automated grading of diabetic retinopathy in retinal images.

Comput Biol Med. 2025-3

[3]
Deep Learning Classification of Drusen, Choroidal Neovascularization, and Diabetic Macular Edema in Optical Coherence Tomography (OCT) Images.

Cureus. 2023-7-9

[4]
Translation of Color Fundus Photography into Fluorescein Angiography Using Deep Learning for Enhanced Diabetic Retinopathy Screening.

Ophthalmol Sci. 2023-9-15

[5]
Performance of Automated Machine Learning for Diabetic Retinopathy Image Classification from Multi-field Handheld Retinal Images.

Ophthalmol Retina. 2023-8

[6]
Automatic detection of non-perfusion areas in diabetic macular edema from fundus fluorescein angiography for decision making using deep learning.

Sci Rep. 2020-9-15

[7]
Coinciding Diabetic Retinopathy and Diabetic Macular Edema Grading With Rat Swarm Optimization Algorithm for Enhanced Capsule Generation Adversarial Network.

Microsc Res Tech. 2025-2

[8]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[9]
Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images.

Comput Biol Med. 2022-7

[10]
Automated multidimensional deep learning platform for referable diabetic retinopathy detection: a multicentre, retrospective study.

BMJ Open. 2022-7-28

引用本文的文献

[1]
Deep learning-based classification of multiple fundus diseases using ultra-widefield images.

Front Cell Dev Biol. 2025-7-17

本文引用的文献

[1]
An enhanced machine learning algorithm for type 2 diabetes prognosis with a detailed examination of Key correlates.

Sci Rep. 2024-11-1

[2]
A deep learning system for myopia onset prediction and intervention effectiveness evaluation in children.

NPJ Digit Med. 2024-8-7

[3]
Hybrid deep learning models for the screening of Diabetic Macular Edema in optical coherence tomography volumes.

Sci Rep. 2024-7-31

[4]
Artificial intelligence in retinal screening using OCT images: A review of the last decade (2013-2023).

Comput Methods Programs Biomed. 2024-9

[5]
The performance of a deep learning system in assisting junior ophthalmologists in diagnosing 13 major fundus diseases: a prospective multi-center clinical trial.

NPJ Digit Med. 2024-1-11

[6]
A deep learning system for predicting time to progression of diabetic retinopathy.

Nat Med. 2024-2

[7]
Analysis of Diabetic Foot Deformation and Plantar Pressure Distribution of Women at Different Walking Speeds.

Int J Environ Res Public Health. 2023-2-19

[8]
Automatic interpretation and clinical evaluation for fundus fluorescein angiography images of diabetic retinopathy patients by deep learning.

Br J Ophthalmol. 2023-11-22

[9]
Alleviating Doctors' Emotional Exhaustion through Sports Involvement during the COVID-19 Pandemic: The Mediating Roles of Regulatory Emotional Self-Efficacy and Perceived Stress.

Int J Environ Res Public Health. 2022-9-18

[10]
A Semi-supervised Deep Learning Method for Cervical Cell Classification.

Anal Cell Pathol (Amst). 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索