Suppr超能文献

基于多视场手持视网膜图像的糖尿病性视网膜病变图像分类的自动化机器学习性能。

Performance of Automated Machine Learning for Diabetic Retinopathy Image Classification from Multi-field Handheld Retinal Images.

机构信息

Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.

Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts.

出版信息

Ophthalmol Retina. 2023 Aug;7(8):703-712. doi: 10.1016/j.oret.2023.03.003. Epub 2023 Mar 15.

Abstract

PURPOSE

To create and validate code-free automated deep learning models (AutoML) for diabetic retinopathy (DR) classification from handheld retinal images.

DESIGN

Prospective development and validation of AutoML models for DR image classification.

PARTICIPANTS

A total of 17 829 deidentified retinal images from 3566 eyes with diabetes, acquired using handheld retinal cameras in a community-based DR screening program.

METHODS

AutoML models were generated based on previously acquired 5-field (macula-centered, disc-centered, superior, inferior, and temporal macula) handheld retinal images. Each individual image was labeled using the International DR and diabetic macular edema (DME) Classification Scale by 4 certified graders at a centralized reading center under oversight by a senior retina specialist. Images for model development were split 8-1-1 for training, optimization, and testing to detect referable DR ([refDR], defined as moderate nonproliferative DR or worse or any level of DME). Internal validation was performed using a published image set from the same patient population (N = 450 images from 225 eyes). External validation was performed using a publicly available retinal imaging data set from the Asia Pacific Tele-Ophthalmology Society (N = 3662 images).

MAIN OUTCOME MEASURES

Area under the precision-recall curve (AUPRC), sensitivity (SN), specificity (SP), positive predictive value (PPV), negative predictive value (NPV), accuracy, and F1 scores.

RESULTS

Referable DR was present in 17.3%, 39.1%, and 48.0% of the training set, internal validation, and external validation sets, respectively. The model's AUPRC was 0.995 with a precision and recall of 97% using a score threshold of 0.5. Internal validation showed that SN, SP, PPV, NPV, accuracy, and F1 scores were 0.96 (95% confidence interval [CI], 0.884-0.99), 0.98 (95% CI, 0.937-0.995), 0.96 (95% CI, 0.884-0.99), 0.98 (95% CI, 0.937-0.995), 0.97, and 0.96, respectively. External validation showed that SN, SP, PPV, NPV, accuracy, and F1 scores were 0.94 (95% CI, 0.929-0.951), 0.97 (95% CI, 0.957-0.974), 0.96 (95% CI, 0.952-0.971), 0.95 (95% CI, 0.935-0.956), 0.97, and 0.96, respectively.

CONCLUSIONS

This study demonstrates the accuracy and feasibility of code-free AutoML models for identifying refDR developed using handheld retinal imaging in a community-based screening program. Potentially, the use of AutoML may increase access to machine learning models that may be adapted for specific programs that are guided by the clinical need to rapidly address disparities in health care delivery.

FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.

摘要

目的

创建并验证无代码的深度学习模型(AutoML),用于对手持视网膜图像进行糖尿病性视网膜病变(DR)分类。

设计

用于 DR 图像分类的 AutoML 模型的前瞻性开发和验证。

参与者

共纳入来自社区糖尿病视网膜病变筛查项目的 3566 只眼中的 17829 张无身份识别的视网膜图像。

方法

基于先前获得的 5 个视野(黄斑中心、视盘中心、上、下和颞侧黄斑)手持视网膜图像生成 AutoML 模型。每张图像均由 4 位认证分级员使用国际 DR 和糖尿病性黄斑水肿(DME)分类量表进行标记,由一位资深视网膜专家监督在集中阅读中心进行。为了检测可治疗的 DR([refDR],定义为中度非增殖性 DR 或更严重或任何程度的 DME),将用于模型开发的图像分为 8-1-1 用于训练、优化和测试。内部验证使用来自同一患者人群的已发表图像集(N=225 只眼中的 450 张图像)进行。外部验证使用亚太远程眼科学会(Asia Pacific Tele-Ophthalmology Society)的公开视网膜成像数据集(N=3662 张图像)进行。

主要观察指标

精度-召回率曲线下面积(AUPRC)、敏感度(SN)、特异度(SP)、阳性预测值(PPV)、阴性预测值(NPV)、准确性和 F1 评分。

结果

训练集、内部验证集和外部验证集中分别有 17.3%、39.1%和 48.0%的患者存在可治疗的 DR。模型的 AUPRC 为 0.995,当分数阈值为 0.5 时,精度和召回率均为 97%。内部验证表明,SN、SP、PPV、NPV、准确性和 F1 评分分别为 0.96(95%置信区间[CI],0.884-0.99)、0.98(95%CI,0.937-0.995)、0.96(95%CI,0.884-0.99)、0.98(95%CI,0.937-0.995)、0.97 和 0.96。外部验证表明,SN、SP、PPV、NPV、准确性和 F1 评分分别为 0.94(95%CI,0.929-0.951)、0.97(95%CI,0.957-0.974)、0.96(95%CI,0.952-0.971)、0.95(95%CI,0.935-0.956)、0.97 和 0.96。

结论

本研究证明了无代码 AutoML 模型对手持视网膜成像进行识别可治疗的 DR 的准确性和可行性,该模型是在社区为基础的筛查项目中开发的。可能的是,AutoML 的使用可以增加对机器学习模型的访问,这些模型可能会根据临床需要进行调整,以迅速解决医疗服务提供方面的差异。

金融披露

参考文献后可能有专有或商业披露。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验