Liu Daolong, Gao Lele, Cui Zihao, Zhou Jun, Zang Hengchang, Huang Panling
School of Mechanical Engineering, Shandong University, Jinan 250061, China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Jinan 250061, China.
National Medical Products Administration Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
Spectrochim Acta A Mol Biomol Spectrosc. 2025 Oct 15;339:126293. doi: 10.1016/j.saa.2025.126293. Epub 2025 Apr 24.
Near-infrared (NIR) spectroscopy, a pivotal tool within process analytical technology (PAT), offers significant potential for real-time monitoring of quality marker (Q-Marker) concentrations in traditional Chinese medicine (TCM) extracts to ensure batch-to-batch consistency. However, interference factors such as noise, mechanical vibrations, and temperature fluctuations in industrial extraction environments can increase spectral data instability, reduce measurement repeatability, and cause baseline drift, thereby diminishing the prediction accuracy of NIR spectroscopy models. To address these challenges, we propose a Multi-Source Cross-Scale Attention Fusion Network (MSCAF-Net), which integrates spectral data from two NIR spectrometers (Bruker MATRIX-F II and Optosky ATP8000) to fuse complementary spectral information. This approach captures more effective features, reduces the signal-to-noise ratio, and enhances the robustness and accuracy of NIR spectral predictions. The MSCAF-Net architecture incorporates a cross-scale feature extraction module to harmonize spectral inputs, followed by a multi-head attention mechanism to selectively focus on critical features. These fused features are subsequently processed through a three-layer convolutional neural network with varying kernel sizes to perform regression-based predictions. The model was validated using a dataset comprising 1008 NIR spectra and 1512 corresponding concentration measurements, collected from the pilot-scale TCM production line for Xuefu Zhuyu Oral Liquid (XZOL). Experimental results demonstrate that MSCAF-Net achieves superior performance, with R values of 0.9870, 0.9723, and 0.8953 for the quantitative prediction of three Q-Markers-naringin, paeoniflorin, and amygdalin, respectively-outperforming both single-spectrometer models and recent fusion-based approaches. These findings highlight the practical value of MSCAF-Net for real-time monitoring and quality control in TCM production.
近红外(NIR)光谱技术是过程分析技术(PAT)中的关键工具,在实时监测中药(TCM)提取物中的质量标志物(Q-Marker)浓度以确保批次间一致性方面具有巨大潜力。然而,工业提取环境中的噪声、机械振动和温度波动等干扰因素会增加光谱数据的不稳定性,降低测量的可重复性,并导致基线漂移,从而降低近红外光谱模型的预测准确性。为应对这些挑战,我们提出了一种多源跨尺度注意力融合网络(MSCAF-Net),该网络整合了两台近红外光谱仪(布鲁克MATRIX-F II和奥谱天成ATP8000)的光谱数据,以融合互补的光谱信息。这种方法能够捕获更有效的特征,降低信噪比,并提高近红外光谱预测的稳健性和准确性。MSCAF-Net架构包含一个跨尺度特征提取模块,用于协调光谱输入,随后是一个多头注意力机制,以选择性地关注关键特征。这些融合后的特征随后通过一个具有不同内核大小的三层卷积神经网络进行处理,以执行基于回归的预测。该模型使用一个数据集进行了验证,该数据集包含从血府逐瘀口服液(XZOL)中试规模中药生产线收集的1008个近红外光谱和1512个相应的浓度测量值。实验结果表明,MSCAF-Net具有卓越的性能,对三种Q-Marker(柚皮苷、芍药苷和苦杏仁苷)进行定量预测时,R值分别为0.9870、0.9723和0.8953,优于单光谱仪模型和近期基于融合的方法。这些发现突出了MSCAF-Net在中药生产实时监测和质量控制中的实用价值。