Suppr超能文献

深度学习在医学图像翻译中的应用:进展、数据集与展望

Medical image translation with deep learning: Advances, datasets and perspectives.

作者信息

Chen Junxin, Ye Zhiheng, Zhang Renlong, Li Hao, Fang Bo, Zhang Li-Bo, Wang Wei

机构信息

School of Software, Dalian University of Technology, Dalian 116621, China.

Institute of Research and Clinical Innovations, Neusoft Medical Systems Co., Ltd., Beijing, China.

出版信息

Med Image Anal. 2025 Jul;103:103605. doi: 10.1016/j.media.2025.103605. Epub 2025 Apr 27.

Abstract

Traditional medical image generation often lacks patient-specific clinical information, limiting its clinical utility despite enhancing downstream task performance. In contrast, medical image translation precisely converts images from one modality to another, preserving both anatomical structures and cross-modal features, thus enabling efficient and accurate modality transfer and offering unique advantages for model development and clinical practice. This paper reviews the latest advancements in deep learning(DL)-based medical image translation. Initially, it elaborates on the diverse tasks and practical applications of medical image translation. Subsequently, it provides an overview of fundamental models, including convolutional neural networks (CNNs), transformers, and state space models (SSMs). Additionally, it delves into generative models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), Autoregressive Models (ARs), diffusion Models, and flow Models. Evaluation metrics for assessing translation quality are discussed, emphasizing their importance. Commonly used datasets in this field are also analyzed, highlighting their unique characteristics and applications. Looking ahead, the paper identifies future trends, challenges, and proposes research directions and solutions in medical image translation. It aims to serve as a valuable reference and inspiration for researchers, driving continued progress and innovation in this area.

摘要

传统医学图像生成往往缺乏针对患者的临床信息,尽管能提高下游任务性能,但限制了其临床应用价值。相比之下,医学图像翻译可精确地将图像从一种模态转换为另一种模态,保留解剖结构和跨模态特征,从而实现高效准确的模态转换,并为模型开发和临床实践带来独特优势。本文综述了基于深度学习(DL)的医学图像翻译的最新进展。首先,阐述了医学图像翻译的各种任务和实际应用。随后,概述了基础模型,包括卷积神经网络(CNN)、Transformer和状态空间模型(SSM)。此外,深入探讨了生成对抗网络(GAN)、变分自编码器(VAE)、自回归模型(AR)、扩散模型和流模型等生成模型。讨论了评估翻译质量的指标,强调了其重要性。还分析了该领域常用的数据集,突出了它们的独特特征和应用。展望未来,本文确定了医学图像翻译的未来趋势、挑战,并提出了研究方向和解决方案。旨在为研究人员提供有价值的参考和启发,推动该领域的持续进步和创新。

相似文献

7
Medical image analysis using deep learning algorithms.医学影像的深度学习算法分析。
Front Public Health. 2023 Nov 7;11:1273253. doi: 10.3389/fpubh.2023.1273253. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验