Suppr超能文献

深度学习在结构磁共振成像扫描配准中的应用:综述。

Deep learning for the harmonization of structural MRI scans: a survey.

机构信息

Department of Computer Engineering, Yazd University, Yazd, Iran.

Department of Neurology, University of Southern California, Los Angeles, CA, USA.

出版信息

Biomed Eng Online. 2024 Aug 31;23(1):90. doi: 10.1186/s12938-024-01280-6.

Abstract

Medical imaging datasets for research are frequently collected from multiple imaging centers using different scanners, protocols, and settings. These variations affect data consistency and compatibility across different sources. Image harmonization is a critical step to mitigate the effects of factors like inherent differences between various vendors, hardware upgrades, protocol changes, and scanner calibration drift, as well as to ensure consistent data for medical image processing techniques. Given the critical importance and widespread relevance of this issue, a vast array of image harmonization methodologies have emerged, with deep learning-based approaches driving substantial advancements in recent times. The goal of this review paper is to examine the latest deep learning techniques employed for image harmonization by analyzing cutting-edge architectural approaches in the field of medical image harmonization, evaluating both their strengths and limitations. This paper begins by providing a comprehensive fundamental overview of image harmonization strategies, covering three critical aspects: established imaging datasets, commonly used evaluation metrics, and characteristics of different scanners. Subsequently, this paper analyzes recent structural MRI (Magnetic Resonance Imaging) harmonization techniques based on network architecture, network learning algorithm, network supervision strategy, and network output. The underlying architectures include U-Net, Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), flow-based generative models, transformer-based approaches, as well as custom-designed network architectures. This paper investigates the effectiveness of Disentangled Representation Learning (DRL) as a pivotal learning algorithm in harmonization. Lastly, the review highlights the primary limitations in harmonization techniques, specifically the lack of comprehensive quantitative comparisons across different methods. The overall aim of this review is to serve as a guide for researchers and practitioners to select appropriate architectures based on their specific conditions and requirements. It also aims to foster discussions around ongoing challenges in the field and shed light on promising future research directions with the potential for significant advancements.

摘要

医学影像数据集通常是从多个成像中心收集的,使用不同的扫描仪、协议和设置。这些变化会影响不同来源的数据一致性和兼容性。图像调和是减轻各种供应商之间固有差异、硬件升级、协议更改和扫描仪校准漂移等因素影响的关键步骤,也是确保医学图像处理技术获得一致数据的关键步骤。鉴于这个问题的重要性和广泛相关性,已经出现了大量的图像调和方法,深度学习方法在最近的研究中取得了重大进展。本文的目的是通过分析医学图像调和领域的前沿架构方法,研究用于图像调和的最新深度学习技术,评估它们的优缺点。本文首先提供了图像调和策略的全面基础概述,涵盖了三个关键方面:现有的成像数据集、常用的评估指标以及不同扫描仪的特点。随后,本文分析了基于网络架构、网络学习算法、网络监督策略和网络输出的最近的结构磁共振成像(MRI)调和技术。所涉及的架构包括 U-Net、生成对抗网络(GAN)、变分自编码器(VAE)、基于流的生成模型、基于转换器的方法以及定制设计的网络架构。本文研究了解缠表示学习(DRL)作为调和中关键学习算法的有效性。最后,本文强调了调和技术中的主要限制,特别是缺乏不同方法之间全面的定量比较。本文的总体目标是为研究人员和从业者提供指导,根据其特定的条件和要求选择合适的架构。它还旨在围绕该领域的持续挑战展开讨论,并阐明具有重大进展潜力的未来研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4947/11365220/4e2cef7e560a/12938_2024_1280_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验