Alcaraz Juan Miguel Lopez, Bouma Hjalmar, Strodthoff Nils
AI4Health Division, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, Oldenburg, 26129, Lower Saxony, Germany.
Department of Internal Medicine, Department of Acute Care, and Department of Clinical Pharmacy & Pharmacology, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713, Groningen, Netherlands.
Comput Biol Med. 2025 Jun;192(Pt A):110196. doi: 10.1016/j.compbiomed.2025.110196. Epub 2025 Apr 30.
AI-driven prediction algorithms have the potential to enhance emergency medicine by enabling rapid and accurate decision-making regarding patient status and potential deterioration. However, the integration of multimodal data, including raw waveform signals, remains underexplored in clinical decision support.
We present a dataset and benchmarking protocol designed to advance multimodal decision support in emergency care. Our models utilize demographics, biometrics, vital signs, laboratory values, and electrocardiogram (ECG) waveforms as inputs to predict both discharge diagnoses and patient deterioration.
The diagnostic model achieves area under the receiver operating curve (AUROC) scores above 0.8 for 609 out of 1,428 conditions, covering both cardiac (e.g., myocardial infarction) and non-cardiac (e.g., renal disease, diabetes) diagnoses. The deterioration model attains AUROC scores above 0.8 for 14 out of 15 targets, accurately predicting critical events such as cardiac arrest, mechanical ventilation, ICU admission, and mortality.
Our study highlights the positive impact of incorporating raw waveform data into decision support models, improving predictive performance. By introducing a unique, publicly available dataset and baseline models, we provide a foundation for measurable progress in AI-driven decision support for emergency care.
人工智能驱动的预测算法有潜力通过实现对患者状态和潜在病情恶化的快速准确决策来提升急诊医学水平。然而,在临床决策支持中,包括原始波形信号在内的多模态数据的整合仍未得到充分探索。
我们展示了一个数据集和基准测试协议,旨在推进急诊护理中的多模态决策支持。我们的模型利用人口统计学、生物特征识别、生命体征、实验室检查值和心电图(ECG)波形作为输入,以预测出院诊断和患者病情恶化情况。
诊断模型在1428种病症中的609种病症上实现了受试者工作特征曲线下面积(AUROC)得分高于0.8,涵盖心脏疾病(如心肌梗死)和非心脏疾病(如肾脏疾病、糖尿病)的诊断。病情恶化模型在15个目标中的14个目标上实现了AUROC得分高于0.8,准确预测了心脏骤停、机械通气、重症监护病房(ICU)入院和死亡等关键事件。
我们的研究强调了将原始波形数据纳入决策支持模型的积极影响,提高了预测性能。通过引入一个独特的、公开可用的数据集和基线模型,我们为人工智能驱动的急诊护理决策支持取得可衡量的进展奠定了基础。