Suppr超能文献

通过心电图进行肿瘤诊断的可解释机器学习:一项外部验证研究。

Explainable machine learning for neoplasms diagnosis via electrocardiograms: an externally validated study.

作者信息

Lopez Alcaraz Juan Miguel, Haverkamp Wilhelm, Strodthoff Nils

机构信息

AI4Health Division, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, Oldenburg, Lower Saxony, 26129, Germany.

Department of Cardiology, Angiology and Intensive Care Medicine, Charité Campus Mitte, German Heart Center of the Charité-University Medicine, Augustenburger Pl. 1, Berlin, 13353, Germany.

出版信息

Cardiooncology. 2025 Jul 26;11(1):70. doi: 10.1186/s40959-025-00370-1.

Abstract

BACKGROUND

Neoplasms are a major cause of mortality globally, where early diagnosis is essential for improving outcomes. Current diagnostic methods are often invasive, expensive, and inaccessible in resource-limited settings. This study explores the potential of electrocardiogram (ECG) data, a widely available and non-invasive tool for diagnosing neoplasms through cardiovascular changes linked to neoplastic presence.

METHODS

A diagnostic pipeline combining tree-based machine learning models with Shapley value analysis for explainability was developed. The model was trained and internally validated on a large dataset and externally validated on an independent cohort to ensure robustness and generalizability. Key ECG features contributing to predictions were identified and analyzed.

RESULTS

The model achieved high diagnostic accuracy in both internal testing and external validation cohorts. Shapley value analysis highlighted significant ECG features, including novel predictors. The approach is cost-effective, scalable, and suitable for resource-limited settings, offering insights into cardiovascular changes associated with neoplasms and their therapies.

CONCLUSIONS

This study demonstrates the feasibility of using ECG signals and machine learning for non-invasive neoplasm diagnosis. By providing interpretable insights into cardio-neoplasm interactions, this method addresses gaps in diagnostics and supports integration into broader diagnostic and therapeutic frameworks.

摘要

背景

肿瘤是全球主要的死亡原因,早期诊断对于改善治疗结果至关重要。当前的诊断方法通常具有侵入性、成本高,并且在资源有限的环境中难以获得。本研究探讨了心电图(ECG)数据的潜力,这是一种广泛可用的非侵入性工具,可通过与肿瘤存在相关的心血管变化来诊断肿瘤。

方法

开发了一种将基于树的机器学习模型与用于可解释性的Shapley值分析相结合的诊断流程。该模型在一个大型数据集上进行训练和内部验证,并在一个独立队列上进行外部验证,以确保稳健性和通用性。确定并分析了对预测有贡献的关键心电图特征。

结果

该模型在内部测试和外部验证队列中均实现了高诊断准确性。Shapley值分析突出了重要的心电图特征,包括新的预测因子。该方法具有成本效益、可扩展性,适用于资源有限的环境,为与肿瘤及其治疗相关的心血管变化提供了见解。

结论

本研究证明了使用心电图信号和机器学习进行非侵入性肿瘤诊断的可行性。通过提供对心脏与肿瘤相互作用的可解释见解,该方法弥补了诊断方面的差距,并支持整合到更广泛的诊断和治疗框架中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b7c/12297791/61cb1c100b8d/40959_2025_370_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验