Suppr超能文献

基于机器学习的糖尿病肾病中失巢凋亡相关基因分类模式及免疫浸润特征的识别

Machine learning based identification of anoikis related gene classification patterns and immunoinfiltration characteristics in diabetic nephropathy.

作者信息

Zhang Jing, Cheng Lulu, Jiang Shan, Zhu Duosheng

机构信息

The Third Department of Jiaozhou City Traditional Chinese Medicine Hospital, Jiaozhou, 266300, Shandong, China.

Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong, China.

出版信息

Sci Rep. 2025 May 1;15(1):15271. doi: 10.1038/s41598-025-99395-w.

Abstract

Anoikis and immune cell infiltration are pivotal factors in the pathophysiological mechanism of diabetic nephropathy (DN), yet a comprehensive understanding of the mechanism is lacking. This work aimed to pinpoint distinctive anoikis-related genes (ARGs) in DN and delve into their impact on the immune landscape. Three datasets (GSE30528, GSE47184, and GSE96804) were downloaded from the gene expression omnibus (GEO) dataset. Differentially expressed genes (DEGs) were identified using the "limma" package, while ARGs were obtained from GSEA, GeneCard, and Harmonizome datasets. The intersection of DEGs and ARGs was analyzed for Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The CIBERSORT algorithm was employed to estimate the infiltration percentage of 22 immune cell types in DN renal tissue. Subsequently, the least absolute shrinkage and selection operator (LASSO), support vector machine recursive feature elimination (SVM-RFE), and random forest (RF) algorithms were adopted to screen key ARGs related to DN. After that, receiver operating characteristic (ROC) analysis was employed to assess the diagnostic accuracy of each gene and the real-time quantitative polymerase chain reaction (RT-qPCR) was adopted to quantitatively detect the expression of biomarkers in DN cell models. Finally, correlations between key genes and immune cell infiltration were analyzed, and a competitive endogenous ribonucleic acid (RNA) (ceRNA) network based on key genes was constructed. A total of 59 DEARGs were identified. GO functional annotation enrichment analysis revealed their involvement in kidney development, extracellular matrix (ECM), cytoplasmic vesicle cavity, immunoinflammatory response, and cytokine effect. KEGG pathway analysis indicated that MAPK, PI3K -Akt, IL -17, TNF, and HIF- 1 signaling pathways are critical for DN. In addition, seven key genes, including PDK4, S100A8, HTRA1, CHI3L1, WT1, CDKN1B, and EGF, were screened by machine learning algorithm. Most of these genes exhibited low expression in renal tissue of DN patients and positive correlation with neutrophils, and their expressions were verified in an external dataset cell model. The ceRNA analysis suggested potential regulatory pathways (H19/miR-15b-5p/PDK4 and KCNQ1T1/miR-1207-3p/WT1) influencing early DN progression. This work provided a comprehensive analysis of the role of DEARGs in DN for the first time, offering valuable insights for further understanding the disease mechanism and guiding clinical diagnosis, treatment, and research of DN.

摘要

失巢凋亡和免疫细胞浸润是糖尿病肾病(DN)病理生理机制中的关键因素,但目前对该机制仍缺乏全面了解。本研究旨在找出DN中与失巢凋亡相关的独特基因(ARGs),并深入探究其对免疫格局的影响。从基因表达综合数据库(GEO)下载了三个数据集(GSE30528、GSE47184和GSE96804)。使用“limma”软件包鉴定差异表达基因(DEGs),同时从GSEA、GeneCard和Harmonizome数据集中获取ARGs。对DEGs和ARGs的交集进行基因本体(GO)功能和京都基因与基因组百科全书(KEGG)通路富集分析。采用CIBERSORT算法估算DN肾组织中22种免疫细胞类型的浸润百分比。随后,采用最小绝对收缩和选择算子(LASSO)、支持向量机递归特征消除(SVM-RFE)和随机森林(RF)算法筛选与DN相关的关键ARGs。之后,采用受试者工作特征(ROC)分析评估每个基因的诊断准确性,并采用实时定量聚合酶链反应(RT-qPCR)定量检测DN细胞模型中生物标志物的表达。最后,分析关键基因与免疫细胞浸润之间的相关性,并构建基于关键基因的竞争性内源性核糖核酸(RNA)(ceRNA)网络。共鉴定出59个差异表达的失巢凋亡相关基因(DEARGs)。GO功能注释富集分析显示它们参与肾脏发育、细胞外基质(ECM)、细胞质囊泡腔、免疫炎症反应和细胞因子效应。KEGG通路分析表明,丝裂原活化蛋白激酶(MAPK)、磷脂酰肌醇-3激酶-蛋白激酶B(PI3K-Akt)、白细胞介素-17(IL-17)、肿瘤坏死因子(TNF)和缺氧诱导因子-1(HIF-1)信号通路对DN至关重要。此外,通过机器学习算法筛选出7个关键基因,包括丙酮酸脱氢酶激酶4(PDK4)、S100钙结合蛋白A8(S100A8)、丝氨酸蛋白酶HTRA1(HTRA1)、几丁质酶3样蛋白1(CHI3L1)、威尔姆斯瘤1(WT1)、细胞周期蛋白依赖性激酶抑制剂1B(CDKN1B)和表皮生长因子(EGF)。这些基因大多在DN患者的肾组织中表达较低,且与中性粒细胞呈正相关,其表达在外部数据集细胞模型中得到验证。ceRNA分析提示了影响早期DN进展的潜在调控通路(H19/微小RNA-15b-5p/PDK4和KCNQ1重叠转录本1/微小RNA-1207-3p/WT1)。本研究首次对DEARGs在DN中的作用进行了全面分析,为进一步了解该疾病机制及指导DN的临床诊断治疗和研究提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6384/12046048/aa3614f0c66a/41598_2025_99395_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验