Suppr超能文献

基于模型的自监督学习用于心肌氧摄取分数和心肌血容量的定量评估。

Model-based self-supervised learning for quantitative assessment of myocardial oxygen extraction fraction and myocardial blood volume.

作者信息

Huang Qi, Tang Haoteng, Wang Keyan, Li Ran, Eldeniz Cihat, Nguyen Natalie, Schindler Thomas H, Peterson Linda R, Yang Yang, Yan Yan, Cheng Jingliang, Woodard Pamela K, Zheng Jie

机构信息

Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA.

Department of Computer Science, University of Texas Rio Grande Valley, Edinburg, Texas, USA.

出版信息

Magn Reson Med. 2025 Oct;94(4):1793-1803. doi: 10.1002/mrm.30555. Epub 2025 May 1.

Abstract

PURPOSE

To develop a model-driven, self-supervised deep learning network for end-to-end simultaneous mapping of myocardial oxygen extraction fraction (mOEF) and myocardial blood volume (MBV).

METHODS

An asymmetrical spin echo-prepared sequence was used to acquire mOEF and MBV images. By integrating a physical model into the training process, a self-supervised learning (SSL) pattern can be regulated. A loss function consisted of the mean squared error, plus cosine similarity was used to improve the performance of network predictions for estimating mOEF and MBV simultaneously. The SSL network was trained and evaluated using simulated data with ground truths and human data in vivo from 10 healthy subjects and 10 patients with myocardial infarction.

RESULTS

In the simulation study, the SSL method demonstrated the ability of generating relatively accurate mOEF, MBV, and ΔB maps simultaneously. In the in vivo study, healthy volunteers had an average mOEF of 0.6-0.7 and MBV of 0.11-0.13, comparable to literature-reported values. In the myocardial infarction regions, the average mOEF and MBV in 5 tested patients reduced to 0.45 ± 0.09 and 0.09 ± 0.02, which were significantly lower (p < 0.001) than those in normal regions (0.67 ± 0.04 and 0.13 ± 0.01, respectively).

CONCLUSION

This work has demonstrated the initial feasibility of generating mOEF and MBV maps simultaneously by a model-driven, self-supervised learning method.

摘要

目的

开发一种模型驱动的自监督深度学习网络,用于心肌氧摄取分数(mOEF)和心肌血容量(MBV)的端到端同步映射。

方法

使用非对称自旋回波准备序列获取mOEF和MBV图像。通过将物理模型集成到训练过程中,可以调节自监督学习(SSL)模式。使用均方误差加余弦相似度组成的损失函数来提高网络同时估计mOEF和MBV预测的性能。使用具有真实值的模拟数据以及来自10名健康受试者和10名心肌梗死患者的体内人体数据对SSL网络进行训练和评估。

结果

在模拟研究中,SSL方法展示了同时生成相对准确的mOEF、MBV和ΔB图的能力。在体内研究中,健康志愿者的平均mOEF为0.6 - 0.7,MBV为0.11 - 0.13,与文献报道值相当。在心肌梗死区域,5名受试患者的平均mOEF和MBV分别降至0.45±0.09和0.09±0.02,显著低于正常区域(分别为0.67±0.04和0.13±0.01,p < 0.001)。

结论

这项工作证明了通过模型驱动的自监督学习方法同时生成mOEF和MBV图的初步可行性。

相似文献

本文引用的文献

2
DeepN4: Learning N4ITK Bias Field Correction for T1-weighted Images.DeepN4:用于 T1 加权图像的 N4ITK 偏置场校正的学习。
Neuroinformatics. 2024 Apr;22(2):193-205. doi: 10.1007/s12021-024-09655-9. Epub 2024 Mar 25.
3
Cardiac MRI: State of the Art.心脏 MRI:最新技术。
Radiology. 2023 May;307(3):e223008. doi: 10.1148/radiol.223008. Epub 2023 Apr 11.
4
7
Domain Adaptation for Medical Image Analysis: A Survey.医学图像分析中的域自适应:综述。
IEEE Trans Biomed Eng. 2022 Mar;69(3):1173-1185. doi: 10.1109/TBME.2021.3117407. Epub 2022 Feb 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验