Bai Xue, Zhang Ziqian, Zhang Miao, Xu Jiaojiao, Dong Keting, Du Qian, Chen Lei, Ma Ping, Yang Jianhong
Medical School, University of Chinese Academy of Sciences, Beijing, China.
Front Pharmacol. 2025 Apr 17;16:1566311. doi: 10.3389/fphar.2025.1566311. eCollection 2025.
Diabetic cardiomyopathy (DCM), a cardiac complication of diabetes, is the main cause of the high prevalence of heart failure and associated mortality in diabetic patients. Oxidative stress and lipid metabolism disorder-induced myocardial cell damage are part of the pathogenesis of DCM. In this study, we investigated the effects of alpha-mangostin (A-MG), a natural antioxidant extracted from mangosteen peel, on and DCM models.
H9C2 rat cardiomyocytes were treated with high glucose (HG) and palmitic acid (PA) for 24 h to establish an DCM cell model. Cell viability and cytotoxicity were evaluated after treatment with varying concentrations of A-MG (0.3, 1, 3, 9, or 27 μM) using Cell Counting Kit-8 (CCK8) and lactate dehydrogenase (LDH) assays. Flow cytometry assessment was used to detect apoptosis. Molecular mechanisms were investigated through transcriptome analysis, quantitative PCR (RT-qPCR), and Western blotting. Type 2 diabetic (T2D) mice, induced by feeding a high-fat diet (HFD) combined with low-dose streptozotocin (STZ), received either vehicle, low-dose A-MG (100 mg/kg/d), or high-dose A-MG (200 mg/kg/d) for 6 weeks. Cardiac function was assessed by echocardiography. H&E and Masson's staining were used to evaluate cardiac tissue structure and fibrosis, and Western blotting was used to evaluate myocardial protein expression.
In HG/F-induced H9C2 cells, A-MG (1 and 3 μM) significantly increased cell viability (p < 0.01) and reduced LDH release (p < 0.05). A-MG (3 μM) attenuated lipid accumulation (p < 0.05), normalized mitochondrial membrane potential (p < 0.01), and inhibited reactive oxygen species (ROS) generation (p < 0.05), malondialdehyde (MDA) production (p < 0.01), and apoptosis (p < 0.05). A-MG also inhibited the nuclear translocation of Forkhead box class O1 (FOXO1) (p < 0.05); reduced the expression of CD36 (p < 0.05), PPARα (p < 0.01), and CPT1β (p < 0.05) proteins; enhanced superoxide dismutase (SOD) activity (p < 0.05); and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) (p < 0.01), HO-1 (p < 0.05), and SOD2 (p < 0.05) protein expression levels. Further investigation in HG/F-induced H9C2 cells indicated that A-MG inhibits the uptake of fatty acids (FAs) by regulating the AKT/FOXO1/CD36 signaling pathway, reduces excessive β-oxidation of FAs mediated by PPARα/CPT1β through the inhibition of FOXO1 nuclear translocation, and stimulates the AKT/Nrf2/HO-1 signaling pathway to increase the cellular antioxidant capacity. In diabetic mice, low-dose A-MG treatment increased anti-oxidative stress capacity, decreased myocardial lipid accumulation, reduced fibrosis and cardiomyocyte apoptosis, and improved left ventricular contractile function.
Using both and DCM models, our study demonstrates that A-MG reduces lipid accumulation and excessive mitochondrial β-oxidation while enhancing antioxidant capacity. These results suggest that A-MG may be a novel therapeutic option for DCM.
糖尿病性心肌病(DCM)是糖尿病的一种心脏并发症,是糖尿病患者心力衰竭高患病率及相关死亡率的主要原因。氧化应激和脂质代谢紊乱诱导的心肌细胞损伤是DCM发病机制的一部分。在本研究中,我们研究了从山竹果皮中提取的天然抗氧化剂α-倒捻子素(A-MG)对DCM模型的影响。
用高糖(HG)和棕榈酸(PA)处理H9C2大鼠心肌细胞24小时,以建立DCM细胞模型。使用细胞计数试剂盒-8(CCK8)和乳酸脱氢酶(LDH)测定法,在用不同浓度的A-MG(0.3、1、3、9或27μM)处理后评估细胞活力和细胞毒性。采用流式细胞术评估检测细胞凋亡。通过转录组分析、定量PCR(RT-qPCR)和蛋白质印迹法研究分子机制。通过高脂饮食(HFD)联合低剂量链脲佐菌素(STZ)诱导的2型糖尿病(T2D)小鼠,接受溶剂、低剂量A-MG(100mg/kg/d)或高剂量A-MG(200mg/kg/d)治疗6周。通过超声心动图评估心脏功能。采用苏木精-伊红(H&E)和Masson染色评估心脏组织结构和纤维化,并使用蛋白质印迹法评估心肌蛋白表达。
在HG/F诱导的H9C2细胞中,A-MG(1和3μM)显著提高细胞活力(p<0.01)并减少LDH释放(p<0.05)。A-MG(3μM)减轻脂质积累(p<0.05),使线粒体膜电位正常化(p<0.01),并抑制活性氧(ROS)生成(p<0.05)、丙二醛(MDA)产生(p<0.01)和细胞凋亡(p<0.05)。A-MG还抑制叉头框O1(FOXO1)的核转位(p<0.05);降低CD36(p<0.05)、过氧化物酶体增殖物激活受体α(PPARα)(p<0.01)和肉碱棕榈酰转移酶1β(CPT1β)蛋白的表达(p<0.05);增强超氧化物歧化酶(SOD)活性(p<0.05);并上调核因子红细胞2相关因子2(Nrf2)(p<0.01)、血红素加氧酶-1(HO-1)(p<0.05)和SOD2(p<0.05)蛋白表达水平。在HG/F诱导的H9C2细胞中的进一步研究表明,A-MG通过调节AKT/FOXO1/CD36信号通路抑制脂肪酸(FAs)摄取,通过抑制FOXO1核转位减少由PPARα/CPT1β介导的FAs过度β氧化,并刺激AKT/Nrf2/HO-1信号通路以增加细胞抗氧化能力。在糖尿病小鼠中,低剂量A-MG治疗提高了抗氧化应激能力,减少了心肌脂质积累,减轻了纤维化和心肌细胞凋亡,并改善了左心室收缩功能。
使用细胞和动物DCM模型,我们的研究表明A-MG减少脂质积累和过度的线粒体β氧化,同时增强抗氧化能力。这些结果表明A-MG可能是DCM的一种新型治疗选择。