Broussard Gerard Joey, Diana Giovanni, Quiroz Francisco J Urra, Sermet B Semihcan, Rebola Nelson, Lynch Laura A, DiGregorio David A, Wang Samuel S-H
Neuroscience Institute, Washington Road, Princeton University, Princeton, New Jersey USA 08540.
Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Synapse and Circuit Dynamics Laboratory, Paris, France.
Res Sq. 2025 Apr 24:rs.3.rs-6017950. doi: 10.21203/rs.3.rs-6017950/v1.
The intramolecular dynamics of fluorescent indicators of neural activity can distort the accurate estimate of action potential ("spike") times. In order to develop a more accurate spike inference algorithm we characterized the kinetic responses to calcium of three popular indicator proteins, GCaMP6f, jGCaMP7f, and jGCaMP8f, using in vitro stopped-flow and brain slice recordings. jGCaMP8f showed a use-dependent slowing of fluorescence responses that caused existing inference methods to generate numerous false positives. From these data we developed a multistate model of GCaMP and used it to create Bayesian Sequential Monte Carlo (Biophys) and machine learning (Biophys) inference methods that reduced false positives substantially. This biophysical method dramatically improved spike time accuracy, detecting individual spikes with a median uncertainty of 4 milliseconds, a performance level that reached the theoretical limit and is twice as accurate as any previous method. Our framework thus highlights advantages of physical model-based approaches over model-free algorithms.
神经活动荧光指示剂的分子内动力学可能会扭曲动作电位(“尖峰”)时间的准确估计。为了开发一种更准确的尖峰推断算法,我们使用体外停流和脑片记录来表征三种常用指示剂蛋白GCaMP6f、jGCaMP7f和jGCaMP8f对钙的动力学响应。jGCaMP8f表现出荧光响应的使用依赖性减慢,这导致现有的推断方法产生大量误报。根据这些数据,我们开发了一个GCaMP多状态模型,并用它创建了贝叶斯序贯蒙特卡罗(Biophys)和机器学习(Biophys)推断方法,这些方法大大减少了误报。这种生物物理方法显著提高了尖峰时间的准确性,检测单个尖峰的中位不确定性为4毫秒,这一性能水平达到了理论极限,是以往任何方法准确性的两倍。因此,我们的框架突出了基于物理模型的方法相对于无模型算法的优势。