Suppr超能文献

关于概率测度的瓦瑟斯坦中位数

On the Wasserstein Median of Probability Measures.

作者信息

You Kisung, Shung Dennis, Giuffrè Mauro

机构信息

Department of Mathematics, Baruch College.

Department of Internal Medicine, Yale School of Medicine.

出版信息

J Comput Graph Stat. 2025;34(1):253-266. doi: 10.1080/10618600.2024.2374580. Epub 2024 Aug 29.

Abstract

The primary choice to summarize a finite collection of random objects is by using measures of central tendency, such as mean and median. In the field of optimal transport, the Wasserstein barycenter corresponds to the Fréchet or geometric mean of a set of probability measures, which is defined as a minimizer of the sum of squared distances to each element in a given set with respect to the Wasserstein distance of order 2. We introduce the Wasserstein median as a robust alternative to the Wasserstein barycenter. The Wasserstein median corresponds to the Fréchet median under the 2 -Wasserstein metric. The existence and consistency of the Wasserstein median are first established, along with its robustness property. In addition, we present a general computational pipeline that employs any recognized algorithms for the Wasserstein barycenter in an iterative fashion and demonstrate its convergence. The utility of the Wasserstein median as a robust measure of central tendency is demonstrated using real and simulated data.

摘要

总结有限随机对象集合的主要方法是使用集中趋势度量,如均值和中位数。在最优传输领域,瓦瑟斯坦重心对应于一组概率测度的弗雷歇均值或几何均值,它被定义为在二阶瓦瑟斯坦距离下到给定集合中每个元素的平方距离之和的最小值。我们引入瓦瑟斯坦中位数作为瓦瑟斯坦重心的稳健替代。在2 -瓦瑟斯坦度量下,瓦瑟斯坦中位数对应于弗雷歇中位数。首先确立了瓦瑟斯坦中位数的存在性和一致性及其稳健性。此外,我们提出了一种通用的计算流程,该流程以迭代方式使用任何公认的瓦瑟斯坦重心算法,并证明其收敛性。使用真实数据和模拟数据展示了瓦瑟斯坦中位数作为稳健集中趋势度量的效用。

相似文献

1
On the Wasserstein Median of Probability Measures.关于概率测度的瓦瑟斯坦中位数
J Comput Graph Stat. 2025;34(1):253-266. doi: 10.1080/10618600.2024.2374580. Epub 2024 Aug 29.
3
Wasserstein-based texture analysis in radiomic studies.基于 Wasserstein 的纹理分析在放射组学研究中的应用。
Comput Med Imaging Graph. 2022 Dec;102:102129. doi: 10.1016/j.compmedimag.2022.102129. Epub 2022 Oct 19.
4
Progressive Wasserstein Barycenters of Persistence Diagrams.持久图的渐进瓦瑟斯坦重心
IEEE Trans Vis Comput Graph. 2019 Aug 12. doi: 10.1109/TVCG.2019.2934256.
10
Wasserstein Distances, Geodesics and Barycenters of Merge Trees.Wasserstein 距离、测地线和合并树的重心。
IEEE Trans Vis Comput Graph. 2022 Jan;28(1):291-301. doi: 10.1109/TVCG.2021.3114839. Epub 2021 Dec 24.

本文引用的文献

1
Optimal Transport for Domain Adaptation.最优传输在域适应中的应用。
IEEE Trans Pattern Anal Mach Intell. 2017 Sep;39(9):1853-1865. doi: 10.1109/TPAMI.2016.2615921. Epub 2016 Oct 7.
3
The multivariate L1-median and associated data depth.多元L1中位数及相关数据深度。
Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1423-6. doi: 10.1073/pnas.97.4.1423.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验