Salvadori Alice, Watanabe Masafumi, Markovic Marica, Sudo Ryo, Ovsianikov Aleksandr
Research Group 3D Printing and Biofabrication, Institute of Material Science and Technology, Technische Universität Wien (TU Wien), Vienna, Austria.
Austrian Cluster for Tissue Regeneration, Vienna, Austria.
Biofabrication. 2025 May 27;17(3). doi: 10.1088/1758-5090/add37e.
Organs-on-Chips (OoCs) are 3D models aiming to faithfully replicatespecific functions of human organs or tissues. While promising as an alternative to traditional 2D cell culture and animal models in drug development, controlled realization of complex microvasculature within OoC remains a significant challenge. Here, we demonstrate how femtosecond laser patterning allows to produce hollow microvascular-like channels inside a collagen-based matrix directly within a microfluidic chip. The hydrogel preparation protocol was optimized to maintain structural stability, facilitating successful endothelialization of produced channels. The resulting microvascular structures exhibit notable physiological relevance, as evidenced by the expression of key endothelial markers (ZO-1, and VE-cadherin) and the successful reproduction of the barrier function. Furthermore, tumor necrosis factor-alpha (TNF-α) exposure induces a concentration-dependent increase in vascular permeability and expression of intercellular adhesion molecule-1 (ICAM-1). The proposed method holds the potential to control and faithfully reproduce the vascularization process in OoC platforms, in both physiological and inflammatory conditions.
芯片器官(OoCs)是旨在忠实地复制人体器官或组织特定功能的三维模型。虽然在药物开发中作为传统二维细胞培养和动物模型的替代方案很有前景,但在芯片器官内实现复杂微血管的可控构建仍然是一项重大挑战。在此,我们展示了飞秒激光图案化如何能够在微流控芯片内的基于胶原蛋白的基质中直接产生中空的微血管样通道。优化了水凝胶制备方案以维持结构稳定性,促进所产生通道的成功内皮化。所得到的微血管结构表现出显著的生理相关性,关键内皮标志物(ZO-1和VE-钙黏蛋白)的表达以及屏障功能的成功再现证明了这一点。此外,肿瘤坏死因子-α(TNF-α)暴露会诱导血管通透性和细胞间黏附分子-1(ICAM-1)表达呈浓度依赖性增加。所提出的方法有潜力在生理和炎症条件下控制并忠实地再现芯片器官平台中的血管化过程。