Yue Sheng-Jie, Liu Ying, Wang Wei, Hu Hong-Bo, Zhang Xue-Hong
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Metab Eng. 2025 Sep;91:217-227. doi: 10.1016/j.ymben.2025.04.010. Epub 2025 Apr 30.
Phenazine derivatives, a class of nitrogen-containing heterocyclic compounds, exhibit broad-spectrum antifungal, anticancer, and antimalarial activities. Pseudomonas and Streptomyces are the primary microbial strains responsible for the synthesis of phenazine derivatives. In general, Pseudomonas strains use phenazine-1-carboxylic acid (PCA) as a precursor for enzymatic modification, while Streptomyces strains employ phenazine-1,6-dicarboxylic acid (PDC) as the precursor. Pseudomonas is considered an ideal platform for the efficient biosynthesis of various phenazine derivatives due to its rapid growth rate, ease of genetic manipulation, and well-established fermentation systems. However, the synthesis of phenazine derivatives in Pseudomonas largely relies on previously reported natural biosynthetic pathways from other microbial strains. The biosynthesis of phenazine derivatives through unknown pathways often presents significant challenges for researchers. The concept of combinatorial biosynthesis offers a promising solution to overcome these difficulties. In this study, we designed and constructed a platform Pseudomonas strain producing 15 phenazine derivatives by exchanging and combining the modifying enzymes of PCA and PDC, besides 16 constructed modification pathways. Among these, three derivatives feature novel chemical structures, while 13 represent previously unreported biosynthetic pathways. With the discovery of new phenazine modifying enzymes, they can be quickly incorporated into our platform, enabling the rapid synthesis of a wide variety of phenazine derivatives. This work demonstrates the potential of designing non-natural metabolic pathways to enable the production of diverse phenazine derivatives, thereby enhancing bacterial capacity for the synthesis of high-value phenazine compounds. This combinatorial biosynthetic approach provides a potential alternative for exploring unknown biosynthetic routes and for the development of unexplored natural biosynthetic pathways for phenazine derivatives.
吩嗪衍生物是一类含氮杂环化合物,具有广谱抗真菌、抗癌和抗疟疾活性。假单胞菌和链霉菌是负责合成吩嗪衍生物的主要微生物菌株。一般来说,假单胞菌菌株使用吩嗪 -1- 羧酸(PCA)作为酶促修饰的前体,而链霉菌菌株则使用吩嗪 -1,6- 二羧酸(PDC)作为前体。由于其生长速度快、易于进行基因操作以及完善的发酵系统,假单胞菌被认为是高效生物合成各种吩嗪衍生物的理想平台。然而,假单胞菌中吩嗪衍生物的合成很大程度上依赖于先前报道的来自其他微生物菌株的天然生物合成途径。通过未知途径进行吩嗪衍生物的生物合成常常给研究人员带来重大挑战。组合生物合成的概念为克服这些困难提供了一个有前景的解决方案。在本研究中,我们设计并构建了一个平台假单胞菌菌株,除了构建的 16 条修饰途径外,通过交换和组合 PCA 和 PDC 的修饰酶来生产 15 种吩嗪衍生物。其中,三种衍生物具有新颖的化学结构,而 13 种代表了以前未报道的生物合成途径。随着新的吩嗪修饰酶的发现,它们可以迅速整合到我们的平台中,从而能够快速合成多种吩嗪衍生物。这项工作证明了设计非天然代谢途径以实现多种吩嗪衍生物生产的潜力,从而增强细菌合成高价值吩嗪化合物的能力。这种组合生物合成方法为探索未知生物合成途径以及开发吩嗪衍生物未被探索的天然生物合成途径提供了一种潜在的替代方法。