Suppr超能文献

参与吩嗪生物合成的黄素依赖性单加氧酶PhzO的研究

Investigations of the Flavin-Dependent Monooxygenase PhzO Involved in Phenazine Biosynthesis.

作者信息

Nie Yan-Fang, Yue Sheng-Jie, Huang Peng, Zhang Xue-Hong, Hao Xiang-Rui, Jiang Lian, Hu Hong-Bo

机构信息

State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Microb Biotechnol. 2025 Jun;18(6):e70186. doi: 10.1111/1751-7915.70186.

Abstract

Phenazines are bioactive secondary metabolites with antifungal, anticancer, and insecticidal properties, while hydroxylated derivatives often exhibit enhanced bioactivity. 2-hydroxyphenazine (2-OH-PHZ), which is synthesised by the flavin-dependent monooxygenase PhzO from phenazine-1-carboxylic acid (PCA), shows better bioactivity against the pathogenic fungus Gaeumannomyces graminis vars. tritici. However, the low catalytic efficiency (10%-20% conversion) of PhzO limited 2-OH-PHZ production. To boost PhzO activity, engineering flavin reductase (Fre)-mediated FADH regeneration was applied to Pseudomonas chlororaphis LX24AE. Remarkably, this approach improved catalytic efficiency from 25% to 40% and increased the production of a novel dihydroxylated derivative. Then, it was first characterised by UPLC-MS and NMR, and identified as 3,4-dihydroxyphenazine-1-carboxylic acid (3,4-OH-PCA). Next, the Fre-PhzO module through heterologous co-expression in P. putida KT2440 demonstrated a 4.5-fold enhancement in hydroxylation efficiency relative to the PhzO mono-component system, which also confirmed that PhzO and flavin reductase are essential for 3,4-OH-PCA biosynthesis. Moreover, in vitro assays further verified that PhzO exhibits FAD-dependent catalytic promiscuity, simultaneously generating 2-OH-PCA and 3,4-OH-PCA. Furthermore, in vitro and in vivo assays demonstrated that substrate concentration affected the distribution of products. Finally, cytotoxicity evaluation of the isolated 3,4-OH-PCA was performed, and it showed substantial inhibition against oesophageal cancer TE-1 cells and human cervical cancer HeLa cells with an IC value of 8.55 μM and 17.69 μM, respectively. This work redefines PhzO as a promiscuous biocatalyst capable of dual hydroxylation, offering a modular platform for engineering bioactive phenazine derivatives.

摘要

吩嗪是具有抗真菌、抗癌和杀虫特性的生物活性次级代谢产物,而羟基化衍生物通常表现出增强的生物活性。由黄素依赖性单加氧酶PhzO从吩嗪-1-羧酸(PCA)合成的2-羟基吩嗪(2-OH-PHZ),对致病真菌禾顶囊壳小麦变种表现出更好的生物活性。然而,PhzO的低催化效率(10%-20%转化率)限制了2-OH-PHZ的产量。为了提高PhzO的活性,将工程化黄素还原酶(Fre)介导的FADH再生应用于绿针假单胞菌LX24AE。值得注意的是,这种方法将催化效率从25%提高到40%,并增加了一种新型二羟基化衍生物的产量。然后,它首先通过超高效液相色谱-质谱联用仪(UPLC-MS)和核磁共振(NMR)进行表征,并被鉴定为3,4-二羟基吩嗪-1-羧酸(3,4-OH-PCA)。接下来,通过在恶臭假单胞菌KT2440中异源共表达的Fre-PhzO模块相对于PhzO单组分系统表现出4.5倍的羟基化效率提高,这也证实了PhzO和黄素还原酶对3,4-OH-PCA生物合成至关重要。此外,体外试验进一步证实PhzO表现出FAD依赖性催化多效性,同时生成2-OH-PCA和3,4-OH-PCA。此外,体外和体内试验表明底物浓度影响产物分布。最后,对分离出的3,4-OH-PCA进行了细胞毒性评估,结果表明它对食管癌TE-1细胞和人宫颈癌HeLa细胞具有显著抑制作用,IC值分别为8.55 μM和17.69 μM。这项工作将PhzO重新定义为一种能够进行双羟基化的多效性生物催化剂,为工程化生物活性吩嗪衍生物提供了一个模块化平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d46/12181393/9c00b15a4ac2/MBT2-18-e70186-g001.jpg

相似文献

1
Investigations of the Flavin-Dependent Monooxygenase PhzO Involved in Phenazine Biosynthesis.
Microb Biotechnol. 2025 Jun;18(6):e70186. doi: 10.1111/1751-7915.70186.
3
Designing an Artificial Pathway for the Biosynthesis of a Novel Phenazine -Oxide in HT66.
ACS Synth Biol. 2020 Apr 17;9(4):883-892. doi: 10.1021/acssynbio.9b00515. Epub 2020 Mar 26.
4
Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine.
Microb Cell Fact. 2016 Jul 28;15(1):131. doi: 10.1186/s12934-016-0529-0.
5
Biosynthesis and metabolic engineering of 1-hydroxyphenazine in Pseudomonas chlororaphis H18.
Microb Cell Fact. 2021 Dec 30;20(1):235. doi: 10.1186/s12934-021-01731-y.
6
Antimicrobial mechanisms and antifungal activity of compounds generated by banana rhizosphere Gxun-2 against f. sp. .
Front Microbiol. 2024 Sep 25;15:1456847. doi: 10.3389/fmicb.2024.1456847. eCollection 2024.
7
Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72.
Appl Microbiol Biotechnol. 2011 Jan;89(1):169-77. doi: 10.1007/s00253-010-2863-1. Epub 2010 Sep 21.
8
Reaction kinetics for the biocatalytic conversion of phenazine-1-carboxylic acid to 2-hydroxyphenazine.
PLoS One. 2014 Jun 6;9(6):e98537. doi: 10.1371/journal.pone.0098537. eCollection 2014.
9
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.
10
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.

本文引用的文献

1
Metabolic design of a platform Pseudomonas strain producing various phenazine derivatives.
Metab Eng. 2025 Sep;91:217-227. doi: 10.1016/j.ymben.2025.04.010. Epub 2025 Apr 30.
2
Recent Advances in Phenazine Natural Products: Biosynthesis and Metabolic Engineering.
J Agric Food Chem. 2024 Oct 2;72(39):21364-21379. doi: 10.1021/acs.jafc.4c05294. Epub 2024 Sep 20.
3
Characterization of Lomofungin Gene Cluster Enables the Biosynthesis of Related Phenazine Derivatives.
ACS Synth Biol. 2024 Sep 20;13(9):2982-2991. doi: 10.1021/acssynbio.4c00394. Epub 2024 Sep 9.
4
Elucidation of the Biosynthesis of Griseoluteic Acid in P510.
J Nat Prod. 2024 Jun 28;87(6):1540-1547. doi: 10.1021/acs.jnatprod.4c00017. Epub 2024 Jun 4.
6
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2024 May-Jun;74(3):229-263. doi: 10.3322/caac.21834. Epub 2024 Apr 4.
7
Economical Production of Phenazine-1-carboxylic Acid from Glycerol by Using Cost-Effective Minimal Medium.
Biology (Basel). 2023 Sep 27;12(10):1292. doi: 10.3390/biology12101292.
8
Population genomics-guided engineering of phenazine biosynthesis in Pseudomonas chlororaphis.
Metab Eng. 2023 Jul;78:223-234. doi: 10.1016/j.ymben.2023.06.008. Epub 2023 Jun 25.
9
High-Level Production of Hydroxytyrosol in Engineered .
ACS Synth Biol. 2022 Nov 18;11(11):3706-3713. doi: 10.1021/acssynbio.2c00316. Epub 2022 Nov 8.
10
Targeting cofactors regeneration in methylation and hydroxylation for high level production of Ferulic acid.
Metab Eng. 2022 Sep;73:247-255. doi: 10.1016/j.ymben.2022.08.007. Epub 2022 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验