Suppr超能文献

通过对模式的吸引力,运用算法方法来塑造人类决策。

Using an algorithmic approach to shape human decision-making through attraction to patterns.

作者信息

Shani-Narkiss Haran, Eitam Baruch, Amsalem Oren

机构信息

UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, W1T 4JG, UK.

School of Psychological Sciences, University of Haifa, Mount Carmel, Haifa, Israel.

出版信息

Nat Commun. 2025 May 2;16(1):4110. doi: 10.1038/s41467-025-59131-4.

Abstract

Evidence suggests that people are attracted to patterns and regularity. We hypothesized that decision-makers, intending to maximize profit, may be lured by the existence of regularity, even when it does not confer any additional value. An algorithm based on this premise outperformed all other contenders in an international challenge to bias individuals' preferences. To create the bias, the algorithm allocates rewards in an evolving, yet easily trackable, pattern to one option but not the other. This leads decision-makers to prefer the regular option over the other 2:1, even though this preference proves to be relatively disadvantageous. The results support the idea that humans assign value to regularity and more generally, for the utility of qualitative approaches to human decision-making. They also suggest that models of decision making that are based solely on reward learning may be incomplete.

摘要

有证据表明,人们会被模式和规律性所吸引。我们假设,意图实现利润最大化的决策者可能会被规律性的存在所诱惑,即使这种规律性并没有带来任何额外价值。在一项影响个人偏好的国际挑战赛中,基于这一前提的算法比所有其他竞争者表现得更出色。为了制造这种偏好,该算法以一种不断演变但易于追踪的模式向一个选项分配奖励,而不是另一个选项。这导致决策者以2比1的比例更喜欢有规律的选项,尽管这种偏好被证明是相对不利的。这些结果支持了这样一种观点,即人类会赋予规律性价值,更普遍地说,支持了定性方法对人类决策有用性的观点。它们还表明,仅基于奖励学习的决策模型可能是不完整的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bf/12048589/b4614e5c75ca/41467_2025_59131_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验