Li Guoqiu, Li Qiaoying, Wu Huaiyu, Huang Zhibin, Tian Hongtian, Yang Keen, Chen Jing, Xu Jinfeng, Yuan Lijun, Dong Fajin
The Second Clinical Medical College of Jinan University, Department of Ultrasound, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong Province, China.
Department of Ultrasound, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shanxi Province, China.
Discov Oncol. 2025 May 2;16(1):659. doi: 10.1007/s12672-025-02406-5.
This study aimed to develop and validate a novel strain elastography (SE) radiomics nomogram for diagnosing breast cancer (BC) by analyzing intratumoral and peritumoral regions.
A cohort of 322 patients, comprising 217 from hospital #1 (06/2021-05/2023) and 105 from hospital #2 (06/2022-05/2023) with breast lesions, was enrolled. Radiomic features were extracted from intratumoral and peritumoral (0-1 mm, 1-2 mm, 2-3 mm) regions on strain elastography images. Significant features were selected using Mann-Whitney U test, Spearman's correlation coefficient, and LASSO logistic regression. A radiomic model was constructed utilizing these features, followed by the development of a radiomic nomogram integrating optimal features.
The intratumoral radiomic model exhibited an area under the receiver operating characteristic curve (AUC) of 0.774 (95% CI: 0.626-0.922) in the internal testing set. Combining peritumoral radiomics, the intratumoral & peritumoral_0-1 mm radiomic model emerged as the optimal model with an AUC of 0.884 (95% CI: 0.766-0.998) in the internal testing set, signifying improved BC identification. The optimal model demonstrated an AUC of 0.841 (95% CI: 0.762-0.920) in the external testing set, indicating robustness and generalization.
The radiomic model incorporating intratumoral & peritumoral_0-1 mm radiomic features shows promise in diagnosing BC, aiding in devising effective clinical treatment strategies.
本研究旨在通过分析肿瘤内和肿瘤周围区域,开发并验证一种用于诊断乳腺癌(BC)的新型应变弹性成像(SE)放射组学列线图。
纳入了322例患有乳腺病变的患者队列,其中217例来自医院1(2021年6月 - 2023年5月),105例来自医院2(2022年6月 - 2023年5月)。在应变弹性成像图像上从肿瘤内和肿瘤周围(0 - 1毫米、1 - 2毫米、2 - 3毫米)区域提取放射组学特征。使用曼 - 惠特尼U检验、斯皮尔曼相关系数和LASSO逻辑回归选择显著特征。利用这些特征构建放射组学模型,随后开发整合最佳特征的放射组学列线图。
肿瘤内放射组学模型在内部测试集中的受试者工作特征曲线(AUC)下面积为0.774(95%置信区间:0.626 - 0.922)。结合肿瘤周围放射组学,肿瘤内及肿瘤周围_0 - 1毫米放射组学模型成为最佳模型,在内部测试集中AUC为0.884(95%置信区间:0.766 - 0.998),表明对乳腺癌的识别有所改善。最佳模型在外部测试集中的AUC为0.841(95%置信区间:0.762 - 0.920),表明具有稳健性和泛化性。
纳入肿瘤内及肿瘤周围_0 - 1毫米放射组学特征的放射组学模型在诊断乳腺癌方面显示出前景,有助于制定有效的临床治疗策略。