Suppr超能文献

通过数据驱动方法揭示精神分裂症的多种生物学亚型。

Revealing multiple biological subtypes of schizophrenia through a data-driven approach.

作者信息

Wang Yuran, Feng Shixuan, Huang Yuanyuan, Peng Runlin, Liang Liqin, Wang Wei, Guo Minxin, Zhu Baoyuan, Zhang Heng, Liao Jianhao, Zhou Jing, Li Hehua, Li Xiaobo, Ning Yuping, Wu Fengchun, Wu Kai

机构信息

School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China.

Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China.

出版信息

J Transl Med. 2025 May 2;23(1):505. doi: 10.1186/s12967-025-06503-5.

Abstract

INTRODUCTION

The brain imaging subtypes of schizophrenia have been widely investigated using data-driven approaches. However, the heterogeneity of SZ in multiple biological data is largely unknown.

METHODS

A data-driven model was used to classify brain imaging, gut microbiota, and brain-gut fusion data obtained through a dot product fusion method, identifying significant subtypes and calculating their correlations with clinical symptoms and cognitive performance.

RESULTS

These subtypes remain relatively independent and demonstrate typical features and biomarkers, which are significantly associated with clinical symptoms and cognitive performance. Two brain subtypes with opposite structural and functional changes are identified: (1) a structural variant-dominant brain subtype with negative symptoms and cognitive deficits and (2) a functional alteration-dominant brain subtype with positive symptoms. The three gut subtypes include the following: (1) Collinsella-dominant; (2) Prevotella-dominant with positive symptoms; and (3) Streptococcus-dominant. Two brain-gut subtypes show different abnormalities in brain‒genus linkages: (1) strong connectivity of "brain function in the temporal and parietal lobes-Prevotella" with reduced attention scores and (2) strong connectivity of "brain structure and function in the frontal and parietal lobes-multiple genera" with positive symptoms. Notably, brain subtypes and brain-gut subtypes are most relevant to clinical symptoms, whereas gut subtypes reveal more cognitive biomarkers.

CONCLUSION

These findings show the potential to identify multiple biological subtypes with distinct biomarkers, thereby suggesting the possibility of personalized and precise treatment for SZ patients.

摘要

引言

精神分裂症的脑成像亚型已通过数据驱动方法进行了广泛研究。然而,精神分裂症在多种生物学数据中的异质性在很大程度上尚不清楚。

方法

使用数据驱动模型对通过点积融合方法获得的脑成像、肠道微生物群和脑肠融合数据进行分类,识别显著亚型并计算它们与临床症状和认知表现的相关性。

结果

这些亚型相对独立,并表现出典型特征和生物标志物,与临床症状和认知表现显著相关。确定了两种结构和功能变化相反的脑亚型:(1)以阴性症状和认知缺陷为主的结构变异型脑亚型;(2)以阳性症状为主的功能改变型脑亚型。三种肠道亚型包括:(1)以柯林斯菌属为主;(2)以普雷沃菌属为主且伴有阳性症状;(3)以链球菌属为主。两种脑肠亚型在脑属连接中表现出不同异常:(1)“颞叶和顶叶脑功能-普雷沃菌属”的强连接性与注意力得分降低相关;(2)“额叶和顶叶脑结构和功能-多个菌属”的强连接性与阳性症状相关。值得注意的是,脑亚型和脑肠亚型与临床症状最相关,而肠道亚型揭示了更多认知生物标志物。

结论

这些发现表明识别具有不同生物标志物的多种生物学亚型的潜力,从而提示对精神分裂症患者进行个性化精准治疗的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc1/12048963/b47a327ab55a/12967_2025_6503_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验