Suppr超能文献

肝细胞癌中全氟和多氟烷基物质(PFAS)的解码:一种多组学和计算毒理学方法。

Decoding per- and polyfluoroalkyl substances (PFAS) in hepatocellular carcinoma: a multi-omics and computational toxicology approach.

作者信息

Hong Yanggang, Wang Deqi, Liu Zeyu, Chen Yuxin, Wang Yi, Li Jiajun

机构信息

The Second School of Clinical Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.

The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.

出版信息

J Transl Med. 2025 May 2;23(1):504. doi: 10.1186/s12967-025-06517-z.

Abstract

BACKGROUND

Per- and polyfluoroalkyl substances (PFAS), particularly perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), are synthetic chemicals known for their widespread use and environmental persistence. These compounds have been increasingly linked to hepatotoxicity and the development of hepatocellular carcinoma (HCC). However, the molecular mechanisms by which PFAS contribute to HCC remain underexplored.

METHODS

This study employs a multi-omics approach that combines network toxicology, integrated machine learning, single-cell RNA sequencing, spatial transcriptomics, experimental validation, and molecular docking simulations to uncover the mechanisms through which PFAS exposure drives HCC. We analyzed publicly available transcriptomic data from several HCC cohorts and used differential gene expression analysis to identify targets associated with both PFAS exposure and HCC. We constructed a protein-protein interaction (PPI) network and a survival risk model, the PFAS-related HCC signature (PFASRHSig), based on integrated machine learning to identify prognostic biomarkers, with the goal of identifying core targets of PFAS in HCC progression and prognosis. RT-qPCR and immunohistochemical (IHC) staining were used to validate the expression levels of the targets in both tumor and normal tissues. Molecular docking simulations were conducted to assess the binding affinities between PFAS compounds and selected target proteins.

RESULTS

Functional enrichment studies revealed that PFAS targets were associated with metabolic signaling pathways, which are actively involved in lipid, glucose, drug metabolism, etc. Through integrated machine learning and PPI network analysis, we identified six genes, APOA1, ESR1, IGF1, PPARGC1A, SERPINE1, and PON1, that serve as core targets of PFAS in both HCC progression and prognosis. These targets were further validated via bulk RNA-seq, single-cell RNA-seq, and spatial transcriptomics, which revealed differential expression patterns across various cell types in the HCC tumor microenvironment. The results of RT-qPCR and IHC staining were consistent with the in silico findings. Molecular docking simulations revealed strong binding affinities between PFAS compounds and these core targets, supporting their potential roles in PFAS-induced hepatocarcinogenesis.

CONCLUSIONS

Our study highlights key molecular targets and pathways involved in PFAS-induced liver carcinogenesis and proposes a robust survival risk model (PFASRHSig) for HCC. These findings provide new insights into PFAS toxicity mechanisms and offer potential therapeutic targets for mitigating the health risks associated with PFAS exposure. Collectively, our findings help in advancing clinical applications by providing insights into disease mechanisms and potential therapeutic interventions.

摘要

背景

全氟和多氟烷基物质(PFAS),尤其是全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS),是一类合成化学品,因其广泛使用和环境持久性而闻名。这些化合物与肝毒性和肝细胞癌(HCC)的发生越来越相关。然而,PFAS导致HCC的分子机制仍未得到充分探索。

方法

本研究采用多组学方法,结合网络毒理学、集成机器学习、单细胞RNA测序、空间转录组学、实验验证和分子对接模拟,以揭示PFAS暴露驱动HCC的机制。我们分析了来自多个HCC队列的公开转录组数据,并使用差异基因表达分析来识别与PFAS暴露和HCC相关的靶点。我们基于集成机器学习构建了蛋白质-蛋白质相互作用(PPI)网络和生存风险模型,即PFAS相关的HCC特征(PFASRHSig),以识别预后生物标志物,目的是确定PFAS在HCC进展和预后中的核心靶点。RT-qPCR和免疫组织化学(IHC)染色用于验证肿瘤组织和正常组织中靶点的表达水平。进行分子对接模拟以评估PFAS化合物与选定靶蛋白之间的结合亲和力。

结果

功能富集研究表明,PFAS靶点与代谢信号通路相关,这些通路积极参与脂质、葡萄糖、药物代谢等过程。通过集成机器学习和PPI网络分析,我们确定了六个基因,即载脂蛋白A1(APOA1)、雌激素受体1(ESR1)、胰岛素样生长因子1(IGF1)、过氧化物酶体增殖物激活受体γ共激活因子1α(PPARGC1A), 丝氨酸蛋白酶抑制剂E1(SERPINE1)和对氧磷酶1(PON1),它们是PFAS在HCC进展和预后中的核心靶点。这些靶点通过批量RNA测序、单细胞RNA测序和空间转录组学进一步得到验证,揭示了HCC肿瘤微环境中不同细胞类型的差异表达模式。RT-qPCR和IHC染色结果与计算机模拟结果一致。分子对接模拟显示PFAS化合物与这些核心靶点之间具有很强的结合亲和力,支持了它们在PFAS诱导的肝癌发生中的潜在作用。

结论

我们的研究突出了PFAS诱导肝癌发生所涉及的关键分子靶点和途径,并提出了一个强大的HCC生存风险模型(PFASRHSig)。这些发现为PFAS毒性机制提供了新的见解,并为减轻与PFAS暴露相关的健康风险提供了潜在的治疗靶点。总体而言,我们的发现通过深入了解疾病机制和潜在的治疗干预措施,有助于推进临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c2/12049027/64a6f51f76ee/12967_2025_6517_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验