文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

鉴定与染色质重塑相关的基因特征以预测乳腺癌的预后。

Identification of chromatin remodeling-related gene signature to predict the prognosis in breast cancer.

作者信息

Feng Jing, Chen Zhiqiang, Wang Yu, Liu Yinghao, Zhao Danni, Gu Xiaodong

机构信息

Department of Breast Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.

Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.

出版信息

Clin Exp Med. 2025 May 3;25(1):137. doi: 10.1007/s10238-025-01661-8.


DOI:10.1007/s10238-025-01661-8
PMID:40317384
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12049336/
Abstract

Growing evidence highlights the critical role of chromatin remodeling in tumor development and progression. This study explores the relationship between chromatin remodeling-related genes (CRRGs) and breast cancer (BRCA). Public databases were used to retrieve the TCGA-BRCA and GSE20685 datasets. CRRGs were sourced from prior studies. Prognosis-associated CRRGs were identified using univariate Cox regression analysis. TCGA-BRCA BRCA samples were grouped into CRRG-related subtypes through consensus clustering analysis. Differential expression analysis was conducted in TCGA-BRCA (BRAC vs. control) and among subtypes to identify differentially expressed genes (DEGs). Candidate genes were obtained through the intersection of these DEGs. Prognostic genes were selected using univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses. Independent prognostic factors were identified, and a nomogram model was developed. Functional enrichment, immune infiltration, clinical relevance, and drug sensitivity analyses were subsequently performed. TCGA-BRCA BRCA samples were classified into two CRRG-related subtypes (clusters 1 and 2) based on prognosis-associated CRRGs. A total of 141 candidate genes were identified by intersecting 250 DEGs (cluster 1 vs. cluster 2) with 3,145 DEGs (BRCA vs. control). Five prognostic genes-LHX5, ZP2, GABRQ, APOA2, and CLCNKB-were selected, and a prognostic risk model was developed. In clinical samples, APOA2 (P = 0.0290) and GABRQ (P = 0.0132) expression were significantly up-regulated, CLCNKB (P < 0.0001) and ZP2 (P = 0.0445) expression were significantly down-regulated, while LHX5 (P = 0.1508) expression did not present a significant difference. A nomogram was created, and calibration and Receiver Operating Characteristic (ROC) curves demonstrated its superior predictive ability for BRCA. Gene Set Variation Analysis (GSVA) revealed 16 pathways, such as "mTORC1 signaling" and "E2F targets," were enriched in the high-risk group, while 9 pathways, including "estrogen response early" and "myogenesis," were enriched in the low-risk group. Additionally, significant differences in immune cell types, including CD8 T cells and follicular helper T cells, were observed between the two risk groups. The risk score was also significantly associated with six drugs, including AZD1332 1463 and SB505124 1194. This study presents a prognostic model based on five genes (LHX5, ZP2, GABRQ, APOA2, and CLCNKB) for BRCA, offering a novel perspective on the link between CRRGs and BRCA.

摘要

越来越多的证据凸显了染色质重塑在肿瘤发生和发展中的关键作用。本研究探讨了染色质重塑相关基因(CRRGs)与乳腺癌(BRCA)之间的关系。使用公共数据库检索TCGA - BRCA和GSE20685数据集。CRRGs来自先前的研究。采用单变量Cox回归分析确定与预后相关的CRRGs。通过一致性聚类分析将TCGA - BRCA乳腺癌样本分为CRRG相关亚型。在TCGA - BRCA(乳腺癌与对照)以及各亚型之间进行差异表达分析,以鉴定差异表达基因(DEGs)。通过这些DEGs的交集获得候选基因。使用单变量Cox和最小绝对收缩与选择算子(LASSO)回归分析选择预后基因。确定独立预后因素,并建立列线图模型。随后进行功能富集、免疫浸润、临床相关性和药物敏感性分析。基于与预后相关的CRRGs,将TCGA - BRCA乳腺癌样本分为两个CRRG相关亚型(簇1和簇2)。通过将250个DEGs(簇1与簇2)与3145个DEGs(乳腺癌与对照)相交,共鉴定出141个候选基因。选择了五个预后基因——LHX5、ZP2、GABRQ、APOA2和CLCNKB,并建立了预后风险模型。在临床样本中,APOA2(P = 0.0290)和GABRQ(P = 0.0132)表达显著上调,CLCNKB(P < 0.0001)和ZP2(P = 0.0445)表达显著下调,而LHX5(P = 0.1508)表达无显著差异。创建了列线图,校准和受试者工作特征(ROC)曲线证明其对乳腺癌具有卓越的预测能力。基因集变异分析(GSVA)显示,16条通路,如“mTORC1信号传导”和“E2F靶标”,在高风险组中富集,而9条通路,包括“早期雌激素反应”和“肌发生”,在低风险组中富集。此外,在两个风险组之间观察到免疫细胞类型的显著差异,包括CD8 T细胞和滤泡辅助性T细胞。风险评分还与六种药物显著相关,包括AZD1332 1463和SB505124 1194。本研究提出了一种基于五个基因(LHX5、ZP2、GABRQ、APOA2和CLCNKB)的乳腺癌预后模型,为CRRGs与乳腺癌之间的联系提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/6183b2ff80e9/10238_2025_1661_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/2f26deb388fe/10238_2025_1661_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/0f0c509fbfe8/10238_2025_1661_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/c53a1e262fd2/10238_2025_1661_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/151632f0764d/10238_2025_1661_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/752652f352af/10238_2025_1661_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/dfbfd901276e/10238_2025_1661_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/ca83745a08ea/10238_2025_1661_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/8d0621eb7931/10238_2025_1661_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/c7fc774c0e77/10238_2025_1661_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/3301cf076359/10238_2025_1661_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/6183b2ff80e9/10238_2025_1661_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/2f26deb388fe/10238_2025_1661_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/0f0c509fbfe8/10238_2025_1661_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/c53a1e262fd2/10238_2025_1661_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/151632f0764d/10238_2025_1661_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/752652f352af/10238_2025_1661_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/dfbfd901276e/10238_2025_1661_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/ca83745a08ea/10238_2025_1661_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/8d0621eb7931/10238_2025_1661_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/c7fc774c0e77/10238_2025_1661_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/3301cf076359/10238_2025_1661_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/12049336/6183b2ff80e9/10238_2025_1661_Fig11_HTML.jpg

相似文献

[1]
Identification of chromatin remodeling-related gene signature to predict the prognosis in breast cancer.

Clin Exp Med. 2025-5-3

[2]
Identification of a novel immune checkpoint-related gene signature predicts prognosis and immunotherapy in breast cancer and experiment verification.

Sci Rep. 2024-12-28

[3]
Development of Chromatin Regulator-related Molecular Subtypes and a Signature to Predict Prognosis and Immunotherapeutic Response in Head and Neck Squamous Cell Carcinoma.

Curr Cancer Drug Targets. 2024

[4]
Identification of cuproptosis-related subtypes, construction of a prognosis model, and tumor microenvironment landscape in gastric cancer.

Front Immunol. 2022

[5]
A glycolysis-related signature to improve the current treatment and prognostic evaluation for breast cancer.

PeerJ. 2024

[6]
A Circadian Rhythm-related Signature to Predict Prognosis, Immune Infiltration, and Drug Response in Breast Cancer.

Curr Med Chem. 2025

[7]
Construction of a novel mRNA-signature prediction model for prognosis of bladder cancer based on a statistical analysis.

BMC Cancer. 2021-7-27

[8]
Investigating the impact of STING pathway activation on breast cancer treatment outcomes: development and validation of a prognostic model.

Front Immunol. 2024

[9]
Identification of a pyroptosis-related prognostic signature in breast cancer.

BMC Cancer. 2022-4-20

[10]
Identifying the prognostic significance of mitophagy-associated genes in multiple myeloma: a novel risk model construction.

Clin Exp Med. 2024-10-29

本文引用的文献

[1]
Prognostic Value of Neutrophil-to-Eosinophil Ratio (NER) in Cancer: A Systematic Review and Meta-Analysis.

Cancers (Basel). 2024-10-31

[2]
Phase separation of phospho-HDAC6 drives aberrant chromatin architecture in triple-negative breast cancer.

Nat Cancer. 2024-11

[3]
Sacituzumab Govitecan for the treatment of advanced triple negative breast cancer patients: a multi-center real-world analysis.

Front Oncol. 2024-3-26

[4]
Datopotamab deruxtecan: A novel antibody drug conjugate for triple-negative breast cancer.

Heliyon. 2024-3-22

[5]
Identification of hub genes to determine drug-disease correlation in breast carcinomas.

Med Oncol. 2023-12-28

[6]
Discontinuation rate and serious adverse events of chemoimmunotherapy as neoadjuvant treatment for triple-negative breast cancer: a systematic review and meta-analysis.

ESMO Open. 2023-12

[7]
Genetic Testing Enhances the Precision Diagnosis and Treatment of Breast Cancer.

Int J Mol Sci. 2023-11-22

[8]
PHF6 recruits BPTF to promote HIF-dependent pathway and progression in YAP-high breast cancer.

J Transl Med. 2023-3-26

[9]
Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers.

Mol Cancer. 2023-3-21

[10]
BPTF promotes the progression of distinct subtypes of breast cancer and is a therapeutic target.

Front Oncol. 2022-11-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索