Suppr超能文献

简化病毒包膜蛋白结构上的异质凝聚

Heterogeneous Condensation on Simplified Viral Envelope Protein Structures.

作者信息

Ahasan Kawkab, Hu Han, Shrotriya Pranav, Kingston Todd A

机构信息

Center for Multiphase Flow Research and Education, Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States.

Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States.

出版信息

ACS Appl Mater Interfaces. 2025 May 14;17(19):27829-27838. doi: 10.1021/acsami.5c01789. Epub 2025 May 3.

Abstract

Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (/)] due to protruding glycoproteins and surface wettability [via liquid-solid interaction intensity ()] on heterogeneous condensation using molecular dynamics simulations. Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. The results indicate that initial condensation rates on surfaces with intermediate ratios (e.g., 1.2-1.3) are significantly higher due to increased active surface area and droplet cluster formations. The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. The increased peak condensation rates are not observed as increased to and above 1.7, as the exhibited behavior is like condensation on the unstructured surface. An increase in surface hydrophilicity (θ = 15°, = 3.0) leads to faster nucleation and higher peak condensation rates compared to hydrophobic surfaces (θ = 105°, = 1.5). The influence of viral envelope geometries and surface wettability on the heterogeneous condensation mechanisms offers foundational insights required to understand airborne biothreat transmission, which is particularly important in the atmosphere and respiratory tract, and improve biothreat detection methods utilizing condensation-based capture devices.

摘要

阐明病毒和细菌包膜上异质凝结的机制对于理解生物威胁传播现象以及优化基于凝结的检测设备中的捕获效率至关重要。我们使用分子动力学模拟研究了由于突出的糖蛋白导致的病毒包膜几何参数[例如,表面结构的间距与直径比(/)]和表面润湿性[通过液固相互作用强度()]对异质凝结的影响。将复杂的糖蛋白结构建模为圆柱形支柱,以分析一系列间距与直径比(1.0、1.2、1.3、1.7、2.0和∞)和接触角(θ = 15°、75°和105°,分别对应于 = 3.0、2.0和1.5)下的凝结速率和活性表面积,以研究多种病毒的包膜几何形状。结果表明,由于活性表面积增加和液滴簇形成,中等间距与直径比(例如,1.2 - 1.3)的表面上的初始凝结速率显著更高。快速的初始凝结填满了支柱之间的间隙,降低了活性表面积,导致凝结速率逐渐下降并趋于平稳。当间距与直径比增加到1.7及以上时,未观察到峰值凝结速率增加,因为其表现出的行为类似于在无结构表面上的凝结。与疏水表面(θ = 105°, = 1.5)相比,表面亲水性增加(θ = 15°, = 3.0)会导致更快的成核和更高的峰值凝结速率。病毒包膜几何形状和表面润湿性对异质凝结机制的影响为理解空气传播的生物威胁传播提供了基础见解,这在大气和呼吸道中尤为重要,同时也有助于改进利用基于凝结的捕获设备的生物威胁检测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616b/12086846/16716eca0a11/am5c01789_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验