Zhang Zigeng, Liu Bo, Chen Wentao, Liu Duoduo, Li Linjun, Ren Yujie, Wang Wenjie, Yuan Honglin, Pang Heliang, Zhang Zhiqiang, Liao Bangyou, Lu Jinsuo
School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi' an 710055, China.
School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi' an 710055, China.
Water Res. 2025 Aug 15;282:123749. doi: 10.1016/j.watres.2025.123749. Epub 2025 Apr 29.
Food waste management posed a critical global sustainability challenge, with significant environmental, economic, and social impacts. The installation of food waste disposers emerged as a primary strategy for source-separated food waste transfer to wastewater treatment systems through municipal pipelines. However, this approach accelerated the transformation of sewer systems into bioreactors and induced sewer pipe deterioration. Therefore, a novel microencapsulation method was developed and optimized to rapidly immobilize comminuted food waste particles. The stability of FW-encapsulated microcapsules was evaluated for their capacity to suppress organic leaching, destabilize functional biofilm architectures, and mitigate hazardous gas emissions and pipeline blockages in sewer systems during sewage conveyance. Results showed that FW-loaded microcapsules exhibited physicochemical stability against hydrodynamic shear and microbial degradation during sewer transport. It suppressed 33.62 mg/L organic matter release based on COD, reduced fluorescent substance accumulation/degradation, and limited macromolecular organics leakage. Microencapsulation destabilized sewer biofilm integrity via EPS reduction, disrupted humic acid stabilization, altered microbial dominance, and induced protein conformational loosening, impairing biofilm resilience. The technology mitigated sewer risks by curbing 3078.3 ppm VOC. It eliminating 100 % and 98.80 % increments of CH and CO compared to crushed FW discharge increments(2.55 mg/L and 0.09 mg/L), suppressing 0.80 mg/L sulfide conversion increments, and minimizing sedimentation through particle size and suspended solids control. Integration with food waste disposers enhanced source-segregated organic collection, optimized hydro-transport to alleviate pipe deterioration, reduced 0.915 MtCO-eq transport-related carbon emissions, and improved treatment efficiency of wastewater treatment plants. This microencapsulation strategy provided a sustainable solution for FW management, combining infrastructure preservation, emission control, and resource recovery.
食物垃圾管理是一项严峻的全球可持续发展挑战,具有重大的环境、经济和社会影响。食物垃圾处理器的安装成为将源头分类的食物垃圾通过市政管道转移至污水处理系统的主要策略。然而,这种方法加速了下水道系统向生物反应器的转变,并导致下水道管道恶化。因此,开发并优化了一种新型微胶囊化方法,以快速固定粉碎后的食物垃圾颗粒。评估了封装食物垃圾的微胶囊的稳定性,以确定其在污水输送过程中抑制有机浸出、破坏功能性生物膜结构、减少有害气体排放和管道堵塞的能力。结果表明,装载食物垃圾的微胶囊在下水道运输过程中对水力剪切和微生物降解具有物理化学稳定性。基于化学需氧量(COD),它抑制了33.62毫克/升的有机物释放,减少了荧光物质的积累/降解,并限制了大分子有机物的泄漏。微胶囊化通过减少胞外聚合物(EPS)破坏了下水道生物膜的完整性,扰乱了腐殖酸的稳定性,改变了微生物优势,导致蛋白质构象松弛,损害了生物膜的恢复能力。该技术通过抑制3078.3 ppm的挥发性有机化合物(VOC)降低了下水道风险。与粉碎后的食物垃圾排放增量(2.55毫克/升和0.09毫克/升)相比,它消除了甲烷(CH)和一氧化碳(CO)100%和98.80%的增量,抑制了0.80毫克/升的硫化物转化增量,并通过控制颗粒大小和悬浮固体减少了沉淀。与食物垃圾处理器集成提高了源头分类有机物质的收集,优化了水力输送以减轻管道恶化,减少了0.915百万吨二氧化碳当量的运输相关碳排放,并提高了污水处理厂的处理效率。这种微胶囊化策略为食物垃圾管理提供了一种可持续的解决方案,结合了基础设施保护、排放控制和资源回收。