Li Yali, Liu Suwei, Zhang Yan, Zhang Mengze, Jiang Chenyu, Ni Ming, Jin Dan, Qian Zhen, Wang Jiangxuan, Pan Xuemin, Yuan Huishu
Department of Radiology, Peking University Third Hospital, 49 Huayuan N Rd, Haidian District, Beijing, China (Y.L., S.L., Y.Z., CC.J., M.N., D.J., J.W., X.P., H.Y.).
The Institute of Intelligent Diagnostics, Beijing United-Imaging Research Institute of Intelligent Imaging, Building 3-4F, 9 Yongteng N. Road, Beijing, China (M.Z., Z.Q.).
Acad Radiol. 2025 Jul;32(7):4254-4265. doi: 10.1016/j.acra.2024.11.062. Epub 2025 May 2.
To explore the feasibility of deep learning (DL)-enhanced, fully automated bone mineral density (BMD) measurement using the ultralow-voltage 80 kV chest CT scans performed for lung cancer screening.
This study involved 987 patients who underwent 80 kV chest and 120 kV lumbar CT from January to July 2024. Patients were collected from six CT scanners and divided into the training, validation, and test sets 1 and 2 (561: 177: 112: 137). Four convolutional neural networks (CNNs) were employed for automated segmentation (3D VB-Net and SCN), region of interest extraction (3D VB-Net), and BMD calculation (DenseNet and ResNet) of the target vertebrae (T12-L2). The BMD values of T12-L2 were obtained using 80 and 120 kV quantitative CT (QCT), the latter serving as the standard reference. Linear regression and Bland-Altman analyses were used to compare BMD values between 120 kV QCT and 80 kV CNNs, and between 120 kV QCT and 80 kV QCT. Receiver operating characteristic curve analysis was used to assess the diagnostic performance of the 80 kV CNNs and 80 kV QCT for osteoporosis and low BMD from normal BMD.
Linear regression and Bland-ltman analyses revealed a stronger correlation (R=0.991-0.998 and 0.990-0.991, P<0.001) and better agreement (mean error, -1.36 to 1.62 and 1.72 to 2.27 mg/cm; 95% limits of agreement, -9.73 to 7.01 and -5.71 to 10.19mg/cm) for BMD between 120 kV QCT and 80 kV CNNs than between 120 kV QCT and 80 kV QCT. The areas under the curve of the 80 kV CNNs and 80 kV QCT in detecting osteoporosis and low BMD were 0.997-1.000 and 0.997-0.998, and 0.998-1.000 and 0.997, respectively.
The DL method could achieve fully automated BMD calculation for opportunistic osteoporosis screening with high accuracy using ultralow-voltage 80 kV chest CT performed for lung cancer screening.
探讨利用为肺癌筛查所进行的超低电压80 kV胸部CT扫描,通过深度学习(DL)增强的全自动骨密度(BMD)测量的可行性。
本研究纳入了987例在2024年1月至7月期间接受80 kV胸部和120 kV腰椎CT检查的患者。患者来自六台CT扫描仪,并被分为训练集、验证集以及测试集1和测试集2(561:177:112:137)。采用四个卷积神经网络(CNN)对目标椎体(T12-L2)进行自动分割(3D VB-Net和SCN)、感兴趣区域提取(3D VB-Net)以及BMD计算(DenseNet和ResNet)。使用80 kV和120 kV定量CT(QCT)获取T12-L2的BMD值,后者作为标准参考。采用线性回归和Bland-Altman分析比较120 kV QCT与80 kV CNN之间以及120 kV QCT与80 kV QCT之间的BMD值。采用受试者操作特征曲线分析评估80 kV CNN和80 kV QCT对骨质疏松症以及从正常骨密度中鉴别低骨密度的诊断性能。
线性回归和Bland-Altman分析显示,120 kV QCT与80 kV CNN之间的BMD相关性更强(R=0.991 - 0.998和0.990 - 0.991,P<0.001)且一致性更好(平均误差,-1.36至1.62和1.72至2.27 mg/cm;95%一致性界限,-9.73至7.01和-5.71至10.19 mg/cm),优于120 kV QCT与80 kV QCT之间的情况。80 kV CNN和80 kV QCT在检测骨质疏松症和低骨密度时的曲线下面积分别为0.997 - 1.000和0.997 - 0.998,以及0.998 - 1.000和0.997。
DL方法能够利用为肺癌筛查所进行的超低电压80 kV胸部CT,以高精度实现用于机会性骨质疏松症筛查的全自动BMD计算。